Previously we observed that rab3 GTPases modulate both the secretion of catecholamines from PC12 neuroendocrine cells and the steady-state accumulation of exogenous norepinephrine (NE) into these cells (Weber, E., Jilling, T., and Kirk, K. L. (1996) J. Biol. Chem. 271, 6963-6971). Here we addressed the mechanisms by which these monomeric GTPases stimulate NE uptake by PC12 cells including their effects on uptake kinetics, their sites of action (secretory granule membrane versus plasma membrane), and the involvement of rab3-interacting proteins in this process. We observed that rab3B stimulated the rate and maximal accumulation of radiolabeled NE into large dense core vesicles within intact PC12 cells. rab3A and rab3B also increased NE uptake into large dense core vesicles in digitonin-permeabilized PC12 cells, which indicates that these GTPases stimulate catecholamine uptake at the level of the secretory granule membrane. In an attempt to identify rab3B targets that may mediate this effect on NE uptake, we found that rab3B interacts directly with phosphoinositide 3-kinase (PI3K) in a GTP-dependent fashion and that PI3K activity was elevated in PC12 cells overexpressing rab3B. Furthermore, two structurally distinct inhibitors of PI3K (wortmannin and LY294002) inhibited NE uptake in intact as well as digitonin-permeabilized PC12 cells, but had no effect on calcium-evoked NE secretion. Our results indicate that rab3 and PI3K positively and coordinately regulate NE uptake in PC12 neuroendocrine cells at least in part by stimulating the secretory vesicle uptake step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M109743200 | DOI Listing |
Mol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38), and c-Jun-N-terminal-kinases (JNKs).
View Article and Find Full Text PDFTalanta
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.
Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!