Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter.

J Biol Chem

Centre for Cardiopulmonary Biochemistry and Respiratory Medicine, Department of Medicine, Royal Free and University College Medical School, The Rayne Institute, 5 University Street, London WC1E 6JJ, United Kingdom.

Published: February 2002

During normal developmental tissue growth and in a number of diseases of the cardiopulmonary system, adventitial and interstitial fibroblasts are subjected to increased mechanical strain. This leads to fibroblast activation and enhanced collagen synthesis, but the underlying mechanisms involved remain poorly understood. In this study, we have begun to identify and characterize mechanical strain-responsive elements in the rat procollagen alpha 1(I) (COL1A1) gene and show that the activity of COL1A1 promoter constructs, transiently transfected into cardiac fibroblasts, was increased between 2- and 4-fold by continuous cyclic mechanical strain. This was accompanied by an approximately 3-fold increase in the levels of total active transforming growth factor-beta (TGF-beta) released into the medium. Inclusion of a pan-specific TGF-beta neutralizing antibody inhibited strain-induced COL1A1 promoter activation. Deletion analysis revealed the presence of two potential strain response regions within the proximal promoter, one of which contains an inverted CCAAT-box overlapping a GC-rich element. Both mechanical strain and exogenously added TGF-beta1 enhanced the binding activity of CCAAT-binding factor, CBF/NF-Y, at this site. Moreover, this element was sufficient to confer strain-responsiveness to an otherwise unresponsive SV40 promoter. In summary, this study demonstrates that strain-induced COL1A1 promoter activation in cardiac fibroblasts is TGF-beta-dependent and involves increased binding of CCAAT-binding factor at the proximal promoter. Furthermore, these findings suggest a novel and potentially important TGF-beta response element in the rat COL1A1 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M108966200DOI Listing

Publication Analysis

Top Keywords

mechanical strain
16
ccaat-binding factor
12
proximal promoter
12
col1a1 promoter
12
procollagen alpha
8
transforming growth
8
involves increased
8
increased binding
8
binding ccaat-binding
8
factor cbf/nf-y
8

Similar Publications

Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.

Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.

View Article and Find Full Text PDF

To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Precise Synthesis of 4.75 V-Tolerant LiCoO with Homogeneous Delithiation and Reduced Internal Strain.

J Am Chem Soc

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.

View Article and Find Full Text PDF

Nosé-Hoover Integrators at-a-Glance: Barostat Integration Has a Demonstrable Effect on Uniaxial Tension Results of Solid Materials.

J Chem Theory Comput

January 2025

Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.

Molecular dynamics is a popular method for evaluating the tensile stress behaviors of many nanomaterials; however, few manuscripts include their thermostat and barostat damping parameters along with their methods. Here, we illustrate the demonstrable effect that barostat integration has on system dynamics during uniaxial testing under a Nosé-Hoover scheme. Three systems are tested: a 2D graphene sheet, a 3D continuous aluminum volume, and a 3D discontinuous polyvinyl alcohol volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!