Bradykinin (BK), a proinflammatory factor and vasodilator, causes functional change of the small artery. However, it is not clear whether any of these changes induced by BK are mediated by N-acetyl-D-sphingosine (ceramide). Therefore, we investigated whether BK affects the hydrolysis of sphingomyelin and generation of ceramide in the intact rat small artery. Our results suggest that BK induces sphingomyelin hydrolysis and increases ceramide production in a time- and dose-dependent manner. Relative to controls, BK causes a 50% decrease in sphingomyelin levels. Ceramide levels increase in response to BK with the highest level being obtained with 10(-8) M BK as well as similar amounts of ceramide are generated when exogenous sphingomyelinase (SMase) is added. We then determined which of the two BK receptors (BK-B(1) antagonist Lys-Des-Arg(9)-Leu(8)-BK or the BK-B(2) antagonist HOE-140) are implicated in the BK-induced generation of ceramide. The BK-B(2) antagonist did not alter the effect of BK on ceramide generation, whereas the BK-B(1) antagonist blocked the BK-induced production of ceramide. Although ceramide had no effect on KCl-induced constrictions, ceramide dilated preconstricted (phenylephrine) small pressurized rat mesenteric arteries by approximately 40%. These results suggest that the activation of the BK-B(1) receptor mediates the BK-induced activation of SMase and of the production of ceramide. In conclusion, BK-mediated effects on vascular tone may be due, at least in part, to the increased production of ceramide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00379.2001 | DOI Listing |
Biol Pharm Bull
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, Josai University.
Ceramide (Cer) is synthesized in the endoplasmic reticulum (ER) using sphinganine as the common backbone and is then transported to the Golgi apparatus to synthesize two complex sphingolipids, sphingomyelin (SM) and glucosylceramide (GlcCer). Brefeldin A (BFA) affects the structure of the Golgi apparatus, resulting in the redistribution of the Golgi proteins into the ER. Therefore, BFA has been used to examine the ER-to-Golgi trafficking of lipids, but the detailed lipid changes in cells upon BFA treatment are not fully understood.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.
This study investigates the metabolic disruptions caused by nicotine (NIC) exposure, with a particular focus on amino acid and lipid metabolism, and evaluates resveratrol (RSV) as a potential protective agent. Mice were divided into four groups: control (CON), NIC-exposed, NIC + RSV-treated, and RSV-only. NIC exposure resulted in significant weight loss, elevated glucose levels, altered lipid profiles, and organ damage, particularly in the liver and kidneys.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.
View Article and Find Full Text PDFEBioMedicine
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:
Background: Lipid species are emerging as biomarkers for cardiometabolic risk in both adults and children. The genetic regulation of lipid species and their impact on cardiometabolic risk during early life remain unexplored.
Methods: Using mass spectrometry-based lipidomics, we measured 227 plasma lipid species in 1149 children and adolescents (44.
Cell Res
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!