Gene targeting experiments have defined that the homeobox gene Prx1 is essential for normal craniofacial, limb, and vascular development. Although its RNA expression pattern is well established, Prx1 protein expression in the developing embryo has not been examined. A novel Prx1 antibody was produced to define the normal Prx1 protein expression pattern in the developing mouse embryo. In craniofacial and limb mesenchyme, Prx1 protein expression is consistent with previously published data on RNA localization. However, a remarkable discrepancy was found in cardiac tissue. Prx1 protein is undetectable in the murine embryonic and adult heart, despite the presence of Prx1 transcripts. These data demonstrate that Prx1 expression is posttranscriptionally regulated. This discrepancy between the presence of Prx1 transcript and the absence of detectable protein was also observed in embryonic chick heart, suggesting conservation of the regulatory mechanism in vertebrates. This observation provides a new explanation of why the Prx null mice lack cardiac malformations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.1198DOI Listing

Publication Analysis

Top Keywords

prx1 protein
20
protein expression
16
prx1
9
craniofacial limb
8
expression pattern
8
presence prx1
8
protein
6
expression
6
investigation prx1
4
expression evidence
4

Similar Publications

PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth.

Int J Mol Sci

November 2024

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood.

View Article and Find Full Text PDF

Bone marrow stromal cells protect myeloma cells from ferroptosis through GPX4 deSUMOylation.

Cancer Lett

December 2024

Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China. Electronic address:

Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138B220 cells separated from the Cd40l;Prx1 mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice.

View Article and Find Full Text PDF

Aim: The aim of this study was to evaluate the expression levels of vascular endothelial growth factor (VEGF), Peroxiredoxin 1 (PRX1), glucose transporter 1 (GLUT1) and type I collagen (COL1) and the rate of tooth movement comparing 3 accelerated tooth movement (ATM) methods: Corticopuncture (CP), photobiomodulation (PBM) and the combined technique (CP + PBM) on days 1, 3, 7 and 14.

Methods: Orthodontic tooth movement was induced in 24 male Wistar rats. CP procedure included three perforations: two in the palate and one mesial to the molars.

View Article and Find Full Text PDF

Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in CCN2 have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing.

View Article and Find Full Text PDF

Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!