Studies using bioassays in normal mice and gene activation in transgenic reporter mice have demonstrated peaks of retinoic acid receptor (RAR) signaling in the brachial and lumbar regions of the spinal cord. Recently, Solomin et al. (Solomin et al. [1998] Nature 395:398-402) detected a retinoid X receptor (RXR) signal in the same region of the developing spinal cord at a slightly later stage than the RAR signal. This finding raises the question of which retinoid ligands underlie RAR and RXR signaling in this part of the embryo. Quantitative measurements of regional differences in retinoid profiles have not been reported previously due to limitation in the sensitivity and specificity of available retinoid detection methods. Here, by using a recently developed ultrasensitive HPLC technique (Sakhi et al. [1998] J. Chromatogr. A 828:451-460), we address this question in an attempt to identify definitively the endogenous retinoids present in different regions of the spinal cord at the stages when regional differences in RAR and RXR signaling have been reported. We find a bimodal distribution of all-trans retinoic acid (at-RA), the ligand for RARs, and relate this to the expression of several retinoid-synthesizing enzymes. However, we do not detect 9-cis-retinoic acid (9-cis-RA), the putative RXR ligand, in any region of the spinal cord unless retinoid levels are massively increased experimentally by gavage feeding pregnant mice with teratogenic doses of at-RA. This study provides for the first time quantitative profiles of endogenous retinoids along the axis of the developing spinal cord, thereby establishing a foundation for more definitive studies of retinoid function in the future. It sets definite limits on how much 9-cis-RA potentially is present and demonstrates that at-RA predominates over 9-cis-RA by at least 30- to 180-fold in different spinal cord regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.1184 | DOI Listing |
Mol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFMult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
Spinal Cord
January 2025
Rehabilitation Studies, Faculty of Medicine and Health, The University of Sydney, The Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.
Study Design: Narrative review OBJECTIVES: Sir Ludwig Guttmann realised spinal cord injury (SCI) rehabilitation should incorporate more than a biomedical approach if SCI patients were to adjust to their injury and achieve productive social re-integration. He introduced components into rehabilitation he believed would assist his patients build physical strength as well as psychological resilience that would help them re-engage with their communities. We pay tribute to Sir Ludwig by presenting research that has focussed on psychosocial factors that contribute to adjustment dynamics after SCI.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!