Oligodendrocytes elaborate an extensive membrane network that ensheathes CNS axons in multilamellar wrappings. A compaction process excludes much of the cytoplasm in mature myelin membranes, giving rise to distinct lipid/protein compositions in two membrane compartments (compact myelin and membranes of the cell body and processes). Insofar as oligodendrocytes arise from neuroepithelial progenitors, it seems likely that some elements are shared for protein targeting by these two cell types. We hypothesized that certain membrane proteins targeting different oligodendroglial membrane compartments would preferentially sort to opposite domains when transfected into Madin-Darby canine kidney (MDCK) epithelial cells. Myelin/oligodendrocyte glycoprotein (MOG) is found in uncompacted membrane (cell body, processes), and it sorts exclusively to MDCK basolateral membrane. Proteolipid protein (PLP) is found in compact myelin, and it sorts exclusively to MDCK apical membrane. Myelin-associated glycoprotein (MAG) is primarily in the periaxonal inner loop of myelin; however, it fails to target preferentially within MDCK cells. This inability of MAG to sort within MDCK cells suggests a lack of required oligodendroglial-specific targeting components. In contrast, the sorting machinery in both oligodendrocytes and MDCK cells recognizes targeting signals for MOG and PLP, and we propose that these oligodendroglial membrane proteins delineate cognate basolateral and apical domains, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.10035 | DOI Listing |
Medicines (Basel)
January 2025
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.
View Article and Find Full Text PDFCell Mol Neurobiol
December 2024
Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
medRxiv
October 2024
University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
Pathophysiology
August 2024
Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Small GTP-binding proteins of the Rab family regulate intracellular vesicle trafficking across many aspects of the transport system. Among these, Rab9 is recognized for its role in controlling the transport system not only around the trans-Golgi network but also around the late endosome. However, the specific functions across different cell types and tissues remain unclear.
View Article and Find Full Text PDFNeurosci Insights
September 2024
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Pelizaeus-Merzbacher disease (PMD, currently known as hypomyelinating leukodystrophy type 1 [HLD1]) is a hereditary hypomyelinating and/or demyelinating disease associated with the proteolipid protein 1 (plp1) gene in the central nervous system (CNS). One of the major causes of this condition is incomplete or defective oligodendroglial cell myelin sheath formation triggered by endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR). The HLD1-associated Ala-243-to-Val mutation (p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!