Differences in doublet analysis have the potential to alter DNA cell-cycle measurements. The techniques for doublet determination are often used interchangeably without regard for the complexity in cell shapes and sizes of biological specimens. G(0/1) doublets were identified and quantitated using fluorescence height versus area and fluorescence width versus area pulse measurements, by enumerating the proportion of G(2) + M cells that lack cyclin B1 immunoreactivity, and modeled in the DNA histograms by software algorithms. These techniques were tested on propidium iodide-stained whole epithelial cells or nuclei from asynchronous cultures, or after exposure to chemotherapeutic agents that induced cell-cycle arrest and were extended to human breast tumor specimens having DNA diploid patterns. G(0/1) doublets were easily discernible from G(2) + M singlets in cells or nuclei that are generally homogenous and spherical in shape. Doublet discrimination based on pulse processing or cyclin B1 measurements was nonconcordant in some nonspherical cell types and in cells following cell cycle arrest. Significant differences in G(0/1) doublet estimates were observed in breast tumor specimens (n = 50), with estimates based on pulse width twice those of pulse height and nearly five times greater than computer estimates. Differences between techniques are attributed to difficulties in the separation of the boundaries between G(0/1) doublets and G(2) + M singlet populations in biologically heterogeneous specimens. To improve reproducibility and enhance standardization among laboratories performing cell cycle analysis in experimental cell systems and in human breast tumors, doublet discrimination analysis should best be accomplished by computer modeling. Shape and size heterogeneity of tumor and arrested cells using pulse-processing can lead to errors and make interlaboratory comparison difficult.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.1171 | DOI Listing |
Front Oncol
February 2024
Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Purpose: Isolating circulating tumour cells (CTCs) from the blood is challenging due to their low abundance and heterogeneity. Limitations of conventional CTC detection methods highlight the need for improved strategies to detect and isolate CTCs. Currently, the Food and Drug Administration (FDA)-approved CellSearch™ and other RUO techniques are not available in India.
View Article and Find Full Text PDFUveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis.
View Article and Find Full Text PDFEur J Appl Physiol
February 2024
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA.
Anal Chem
October 2022
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger.
View Article and Find Full Text PDFCytometry A
May 2023
Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain.
Doublet discrimination is usually based on pulse analysis of light scatter parameters. A combination of two pulse parameters (Area, A; Height, H; or Width, W) can be used to discriminate a pulse originated in a single cell from a pulse originated from cells stuck together. Fluorescence signals can be also used to discriminate aggregates, being essential to identify cells in the G2/M phase from doublets in the G0/G1 phase in cell cycle/DNA applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!