Hexameric insulin is an allosteric protein that undergoes transitions between three conformational states (T(6), T(3)R(3), and R(6)). These allosteric states are stabilized by the binding of ligands to the phenolic pockets and by the coordination of anions to the His B10 metal sites. Raman difference (RD) spectroscopy is utilized to examine the binding of phenolic ligands and the binding of thiocyanate, p-aminobenzoic acid (PABA), or 4-hydroxy-3-nitrobenzoic acid (4H3N) to the allosteric sites of T(3)R(3) and R(6). The RD spectroscopic studies show changes in the amide I and III bands for the transition of residues B1-B8 from a meandering coil to an alpha helix in the T-R transitions and identify the Raman signatures of the structural differences among the T(6), T(3)R(3), and R(6) states. Evidence of the altered environment caused by the approximately 30 A displacement of phenylalanine (Phe) B1 is clearly seen from changes in the Raman bands of the Phe ring. Raman signatures arising from the coordination of PABA or 4H3N to the histidine (His) B10 Zn(II) sites show these carboxylates give distorted, asymmetric coordination to Zn(II). The RD spectra also reveal the importance of the position and the type of substituents for designing aromatic carboxylates with high affinity for the His B10 metal site.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.1020DOI Listing

Publication Analysis

Top Keywords

raman signatures
12
hexameric insulin
8
b10 metal
8
raman
5
signatures ligand
4
binding
4
ligand binding
4
allosteric
4
binding allosteric
4
allosteric conformation
4

Similar Publications

Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications.

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Primordial black holes and their gravitational-wave signatures.

Living Rev Relativ

January 2025

Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.

In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.

View Article and Find Full Text PDF

Factors that Affect Quantification in Surface-Enhanced Raman Scattering.

ACS Nano

January 2025

Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada.

Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!