Objective: Smooth muscle cell (SMC) proliferation contributes to vascular structural changes in cardiovascular disease. Ca(2+) antagonists exert antiproliferative effects and may also be clinically beneficial in the patients. However, the underlying mechanisms of action remain elusive. Activation of mitogen-activated protein kinases (MAPK), in particular p42/44mapk plays a central role in cell proliferation. We hypothesise that Ca(2+) antagonists inhibit cell proliferation by interfering with the p42/44mapk pathway in human SMC.

Methods: SMC were cultured from human aorta. Cell proliferation was analysed by [3H]thymidine incorporation. Activation of p42/44mapk and the nuclear target protein Elk-1 was analysed by phosphorylation and p42/44mapk nuclear translocation by confocal microscope.

Results: PDGF-BB (10 ng/ml) stimulated [3H]thymidine incorporation, phosphorylated p42/44mapk, caused nuclear translocation of the enzymes and phosphorylated the nuclear target protein Elk-1. Felodipine (10(-7) to 10(-5) mol/l) inhibited [3H]thymidine incorporation to PDGF-BB, had no effect on p42/44mapk phosphorylation. However, p42/44mapk nuclear translocation and Elk-1 activation stimulated by PDGF-BB were prevented by the Ca(2+) antagonist.

Conclusion: Activation of p42/44mapk, subsequent nuclear translocation and activation of Elk-1 are essentially associated with human SMC proliferation. The Ca(2+) antagonist felodipine prevents p42/44mapk nuclear translocation (but not its activation) associated with inhibition of human SMC growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0008-6363(01)00419-9DOI Listing

Publication Analysis

Top Keywords

nuclear translocation
24
p42/44mapk nuclear
16
cell proliferation
12
[3h]thymidine incorporation
12
p42/44mapk
9
nuclear
8
mitogen-activated protein
8
smooth muscle
8
muscle cell
8
smc proliferation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!