An enriched environment increases noradrenaline concentration in the mouse brain.

Brain Res

Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan.

Published: January 2002

Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. In the present study, we examined the effects of environmental enrichment on monoaminergic neurons in the mouse brain. After being exposed to an enriched environment for 40 days, noradrenaline content was increased significantly in the parieto-temporo-occipital cortex, the cerebellum and the pons/medulla oblongata. In contrast, no changes were observed in serotonin or dopamine levels in these same regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(01)03257-7DOI Listing

Publication Analysis

Top Keywords

enriched environment
12
mouse brain
8
environment increases
4
increases noradrenaline
4
noradrenaline concentration
4
concentration mouse
4
brain exposure
4
exposure enriched
4
environment positive
4
positive effects
4

Similar Publications

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Introduction: Powassan virus (POWV), a vector-borne pathogen transmitted by ticks in North America, is the causative agent of Powassan encephalitis. As obligate hematophagous organisms, ticks transmit pathogens like POWV at the tick bite site, specifically during the initial stages of feeding. Tick feeding and salivary factors modulate the host's immunological responses, facilitating blood feeding and pathogen transmission.

View Article and Find Full Text PDF

Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.

Plant Cell Environ

January 2025

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.

Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms.

View Article and Find Full Text PDF

Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!