A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tolerance of glycosylphosphatidylinositol (GPI)-specific phospholipase D overexpression by Chinese hamster ovary cell mutants with aberrant GPI biosynthesis. | LitMetric

Mammalian glycosylphosphatidylinositol (GPI)-specific phospholipase D (GPI-PLD) is capable of releasing GPI-anchored proteins by cleavage of the GPI moiety. A previous study indicated that overexpression of GPI-PLD in mouse RAW 264.7 monocytes/macrophages could be cytotoxic, since survivors of stable transfections had enzymic activity no higher than untransfected cells [Du and Low (2001) Infect. Immun. 69, 3214-3223]. We investigated this phenomenon by transfecting bovine GPI-PLD cDNA stably into Chinese hamster ovary (CHO) cells using a bi-cistronic expression system. The surviving transfectants showed an unchanged cellular level of GPI-PLD, supporting the cytotoxicity hypothesis. However, when using a CHO mutant defective in the second step of GPI biosynthesis as host, the expression level of GPI-PLD in stable transfectants was increased by 2.5-fold compared with untransfected or empty-vector-transfected cells. To identify the mechanism, we studied another CHO cell mutant (G9PLAP.D5), which seems to be defective at a later stage in GPI biosynthesis. In sharp contrast with wild-type cells, GPI-PLD activity in G9PLAP.D5 transfected with bovine GPI-PLD cDNA was 100-fold higher than untransfected or empty-vector-transfected cells. This was accompanied by a significant release of alkaline phosphatase into the medium and a decrease in membrane-associated alkaline phosphatase. Taken together, our results indicate that overexpression of GPI-PLD is lethal to wild-type cells, possibly by catalysing the overproduction of GPI-derived toxic substances. We propose that cells with abnormal GPI biosynthesis/processing can escape the toxic effect of these substances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222285PMC
http://dx.doi.org/10.1042/0264-6021:3610113DOI Listing

Publication Analysis

Top Keywords

gpi biosynthesis
12
glycosylphosphatidylinositol gpi-specific
8
gpi-specific phospholipase
8
chinese hamster
8
hamster ovary
8
gpi-pld
8
overexpression gpi-pld
8
higher untransfected
8
bovine gpi-pld
8
gpi-pld cdna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!