Neurotrophin receptor expression and responsiveness by postnatal cerebral oligodendroglia.

Neuroreport

Development and Neurobiology Group, The Walter and Eliza Hall Institute of Medical Research, Post Office, The Royal Melbourne Hospital Parkville 3050 Victoria, Australia.

Published: December 2001

The low affinity neurotrophin receptor (p75(NTR)) is implicated in promoting oligodendrocytic death after nerve growth factor (NGF) stimulation but NGF and neurotrophin-3 (NT-3) can also potentiate oligodendrocytic survival. We show regional variability in p75(NTR) expression within the central nervous system of the postnatal rat; expression is readily detectable by immunohistochemistry upon a subset of CNPase-positive oligodendroglia in optic nerve but not within the cerebrum. Nevertheless, oligodendroglia isolated from the cerebrum and cultured for 16 hours express p75(NTR) as well as the trkC but not the TrkA gene. Viability was not, however, influenced by exposure to either NGF or NT-3. Cells overexpressing p75(NTR) remained unresponsive to NGF but exhibited potentiated survival with NT-3, correlating with the differential expression profile of their high affinity receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200112210-00044DOI Listing

Publication Analysis

Top Keywords

neurotrophin receptor
8
expression
4
receptor expression
4
expression responsiveness
4
responsiveness postnatal
4
postnatal cerebral
4
cerebral oligodendroglia
4
oligodendroglia low
4
low affinity
4
affinity neurotrophin
4

Similar Publications

To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.

View Article and Find Full Text PDF

In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

It was previously shown that the original dipeptide mimetic of the 4th loop of neurotrophin-3 (NT-3) hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), like the full-length neurotrophin, predominantly activates the tyrosine kinase receptor TrkC and has a neuroprotective effect in vitro at concentrations of 10-10 M, as well as antidiabetic (0.1 and 0.5 mg/kg) and antidepressant (5 and 10 mg/kg) effects after systemic administration in rodents.

View Article and Find Full Text PDF

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!