Introduction: Calpains, cytosolic Ca(2+)-dependent cysteine proteases, are expressed in a variety of mammalian cells and have been found to participate in stimulus-secretion coupling in platelets and alveolar cells.

Aims: In pancreatic acinar cells, expression of calpains and their role in the secretory process have not yet been elucidated. Both subjects, therefore, were examined in the current study.

Methodology: mu-calpain and m-calpain were detected immunochemically. Calpain activation was measured by fluorescence spectrophotometry and single-cell fluorometry using Suc-Leu-Leu-Val-Tyr-AMC as substrate. Amylase secretion and cell damage, characterized by lactate dehydrogenase release, were measured by colorimetric assays.

Results: Immunochemistry revealed cytoplasmic localization of both calpain isoforms. Immediately after increasing the cytosolic Ca(2+) concentration with ionomycin, a marked dose-dependent protease activation and cellular damage were observed. Inhibition of ionomycin-mediated enzyme activation through preincubation of cells with Ca(2+)-free medium, BAPTA-AM, or Z-Leu-Leu-Tyr-CHN(2) significantly reduced cell injury. Cholecystokinin (100 pM) also induced proteolytic activity, preceding cholecystokinin-stimulated amylase secretion. Protease activity and amylase release were significantly inhibited by Z-Leu-Leu-Tyr-CHN(2 ) retreatment.

Conclusion: Calpains are expressed in pancreatic acinar cells and may participate in stimulus-secretion coupling. In addition, our study indicates that pathologic calpain activation may contribute to Ca(2+)-mediated acinar cell damage.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006676-200201000-00009DOI Listing

Publication Analysis

Top Keywords

pancreatic acinar
12
acinar cells
12
cells participate
8
participate stimulus-secretion
8
stimulus-secretion coupling
8
calpain activation
8
amylase secretion
8
cell damage
8
cells
5
expression regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!