Background: The NUP98 gene is involved in multiple rearrangements in haematological malignancy. The leukemic cells in an acute myeloid leukemia (AML) patient with a t(9;11)(p22;p15) were recently shown to have a fusion between the NUP98 gene and the LEDGF gene but it was not demonstrated that this fusion was recurrent in other leukaemia patients with the same translocation.
Results: We used RT-PCR to analyse the leukemic cells from an AML patient who presented with a cytogenetically identical translocation as the sole chromosomal abnormality. A NUP98-LEDGF fusion transcript was observed and confirmed by sequencing. The reciprocal transcript was also observed. The fusion transcript was not detectable during remission and recurred at relapse. The breakpoints in the NUP98 and LEDGF genes were different to those previously reported. The NUP98 breakpoint occurs in the intron between exons 8 and 9. It is the most 5' breakpoint reported in a translocation involving the NUP98 gene. All of the LEDGF gene is included in the fusion except for exon 1 which codes for the first 24 amino terminal amino acids.
Conclusions: Our results show that fusion of the NUP98 and LEDGF genes is a new recurrent translocation in AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC60524 | PMC |
http://dx.doi.org/10.1186/1471-2156-2-20 | DOI Listing |
Genes Chromosomes Cancer
January 2025
Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
Recurrent fusions drive the pathogenesis of many hematological malignancies. Compared to routine cytogenetic/fluorescence in situ hybridization (FISH) studies, the RNA-based next-generation sequencing (NGS) fusion assay enables the identification of both known and novel fusions. In many cases, these recurrent fusions are crucial for diagnosis and are associated with prognosis, relapse prediction, and therapeutic options.
View Article and Find Full Text PDFInt J Lab Hematol
January 2025
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Introduction: NUP98 rearrangements are rare in acute leukemias and portend a poor prognosis.
Methods: This study explored clinicopathologic and molecular features of five patients with NUP98 rearranged (NUP98-r) acute leukemias, including three females and two males with a median age of 34 years.
Results: NUP98 fusion partners were associated with distinctive leukemia characteristics and biology.
Blood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFBr J Haematol
December 2024
Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
Acute myeloid leukaemia with NUP98 rearrangement (AML-NUP98) has been previously described in paediatric patients, and the clinical significance in adult AML patients remains largely unexplored. In this study, we identified specific partner fusion genes and examined somatic co-mutations and clonal evolution longitudinally in adult AML-NUP98 patients. Our comprehensive analysis provides an understanding of NUP98 rearrangement and co-mutations influencing clonal evolution and disease progression and offers valuable insights into potential therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!