In the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2), the thiol-disulphide status of the hyphae is controlled by a novel regulatory system consisting of a sigma factor, sigmaR, and its cognate anti-sigma factor, RsrA. Oxidative stress induces intramolecular disulphide bond formation in RsrA, which causes it to lose affinity for sigmaR, thereby releasing sigmaR to activate transcription of the thioredoxin operon, trxBA. Here, we exploit a preliminary consensus sequence for sigmaR target promoters to identify 27 new sigmaR target genes and operons, thereby defining the global response to disulphide stress in this organism. Target genes related to thiol metabolism encode a second thioredoxin (TrxC), a glutaredoxin-like protein and enzymes involved in the biosynthesis of the low-molecular-weight thiol-containing compounds cysteine and molybdopterin. In addition, the level of the major actinomycete thiol buffer, mycothiol, was fourfold lower in a sigR null mutant, although no candidate mycothiol biosynthetic genes were identified among the sigmaR targets. Three sigmaR target genes encode ribosome-associated products (ribosomal subunit L31, ppGpp synthetase and tmRNA), suggesting that the translational machinery is modified by disulphide stress. The product of another sigmaR target gene was found to be a novel RNA polymerase-associated protein, RbpA, suggesting that the transcriptional machinery may also be modified in response to disulphide stress. We present DNA sequence evidence that many of the targets identified in S. coelicolor are also under the control of the sigmaR homologue in the actinomycete pathogen Mycobacterium tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2001.02675.xDOI Listing

Publication Analysis

Top Keywords

disulphide stress
16
sigmar target
16
target genes
12
sigmar
10
streptomyces coelicolor
8
coelicolor a32
8
response disulphide
8
machinery modified
8
stress
5
target
5

Similar Publications

Redox proteomics reveal a role for peroxiredoxinylation in stress protection.

Cell Rep

January 2025

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:

The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.

View Article and Find Full Text PDF

Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.

View Article and Find Full Text PDF

Nanocomposites of epoxy with FeO featuring dynamic disulfide bonds were fabricated. To facilitate the dispersion of FeO nanoparticles, we synthesized poly(ε-caprolactone)-grafted FeO nanoparticles, which were then incorporated into epoxy to generate robust interfacial interactions between epoxy and the inorganic nanoparticles. Through this approach, a fine dispersion of the inorganic nanoparticles in the epoxy matrix was successfully obtained.

View Article and Find Full Text PDF

Gaudichaudione H Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Disulfidptosis via Regulating NRF2-SLC7A11 Signaling Pathway.

Adv Sci (Weinh)

January 2025

International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.

Gaudichaudione H (GH) is a naturally occurring small molecular compound derived from Garcinia oligantha Merr. (Clusiaceae), but the full pharmacological functions remain unclear. Herein, the potential of GH in disulfidptosis regulation, a novel form of programmed cell death induced by disulfide stress is explored.

View Article and Find Full Text PDF

We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!