Bacterial adhesion on titanium implant surfaces has a strong influence on healing and long-term outcome of dental implants. Parameters like surface roughness and chemical composition of the implant surface were found to have a significant impact on plaque formation. The purpose of this study was to evaluate the influence of two physical hard coatings on bacterial adhesion in comparison with control surfaces of equivalent roughness. Two members of the oral microflora, Streptococcus mutans and Streptococcus sanguis were used. Commercially pure titanium discs were modified using four different surface treatments: physical vapour deposition (PVD) with either titanium nitride (TiN) or zirconium nitride (ZrN), thermal oxidation and structuring with laser radiation. Polished titanium surfaces were used as controls. Surface topography was examined by SEM and estimation of surface roughness was done using a contact stylus profilometer. Contact angle measurements were carried out to calculate surface energy. Titanium discs were incubated in the respective bacterial cell suspension for one hour and single colonies formed by adhering bacteria were counted by fluorescence microscopy. Contact angle measurements showed no significant differences between the surface modifications. The surface roughness (Ra) of all surfaces examined was between 0.14 and 1.00 microm. A significant reduction of the number of adherent bacteria was observed on inherently stable titanium hard materials such as TiN and ZrN and thermically oxidated titanium surfaces compared to polished titanium. In conclusion, physical modification of titanium implant surfaces such as coating with TiN or ZrN may reduce bacterial adherence and hence improve clinical results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-0501.2001.120601.x | DOI Listing |
Int J Biol Macromol
January 2025
Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:
Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:
A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
Cold plasma generated by dielectric barrier discharge (DBD) and DBD combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM) have shown the potential as a surface decontamination method for the food industry. The objective of this research was to measure the microbial inactivation caused by DBD and by PAM on tryptic soy agar (TSA) and on glass slides and to determine the efficacy of PAM on selected surfaces having different surface topographies. Tryptic soy agar in Petri dishes and on glass slides (surface roughness Pq = 0.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:
There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil. Electronic address:
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!