Three independent nonperturbative calculations are reported for the electron-impact ionization of both the ground and first excited states of the neutral lithium atom. The time-dependent close-coupling, the R matrix with pseudostates, and the converged close-coupling methods yield total integral cross sections that are in very good agreement with each other, while perturbative distorted-wave calculations yield cross sections that are substantially higher. These nonperturbative calculations provide a benchmark for the continued development of electron-atom experimental methods designed to measure both ground and excited state ionization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.87.213201DOI Listing

Publication Analysis

Top Keywords

nonperturbative calculations
12
electron-impact ionization
8
ground excited
8
cross sections
8
benchmark nonperturbative
4
calculations
4
calculations electron-impact
4
ionization li2s
4
li2s li2p
4
li2p three
4

Similar Publications

Transverse Momentum Distributions from Lattice QCD without Wilson Lines.

Phys Rev Lett

December 2024

Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD correlators under principal-value prescription in the infinite boost limit. In the framework of large-momentum effective theory, a quasi-TMD defined from such correlators in a large-momentum hadron state can be matched to the TMD via a factorization formula, whose exact form is derived using soft collinear effective theory and verified at one-loop order.

View Article and Find Full Text PDF

The BESIII Collaboration recently performed a precise measurement of the e^{+}e^{-}→DD[over ¯] Born cross sections, and confirmed the G(3900) structure reported by BABAR and Belle with high significance. We identify the G(3900) as the first P-wave DD[over ¯]^{*}/D[over ¯]D^{*} molecular resonance. The experimental and theoretical identification of the P-wave dimeson state holds paramount importance in enhancing our comprehension of the nonperturbative QCD and few-body physics.

View Article and Find Full Text PDF

In recent years, energy correlators have emerged as a powerful tool to explore the field theoretic structure of strong interactions at particle colliders. In this Letter we initiate a novel study of the nonperturbative power corrections to the projected N-point energy correlators in the limit where the angle between the detectors is small. Using the light-ray operator product expansion as a guiding principle, we derive the power corrections in terms of two nonperturbative quantities describing the fragmentation of quarks and gluons.

View Article and Find Full Text PDF
Article Synopsis
  • High-temperature superconducting cuprates exhibit unique patterns of spin and charge orders that interact with superconductivity in complex ways.
  • Research using advanced quantum Monte Carlo simulations reveals that these patterns change differently depending on the material and temperature, particularly with varying charge transfer energy and doping levels.
  • The study concludes that charge modulations become less correlated with spin modulations as doping increases, aligning with experimental results, and suggests that high-temperature charge correlations differ from low-temperature stripe orders.
View Article and Find Full Text PDF

The low-to-high confinement (L-H) transition signifies one of the important plasma bifurcations occurring in magnetic confinement plasmas, with vital implications for exploring high-performance regimes in future fusion reactors. In particular, the accurate turbulence statistical description of self-regulation and causal relation among turbulence and shear flows is essential for accessing enhanced plasma performance and advanced operation scenarios. To address this, we provide a nonperturbative theory of the L-H transition by stochastic simulations of a reduced L-H transition model and detailed statistical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!