We have reconstructed the evolution of the anciently derived kinesin superfamily using various alignment and tree-building methods. In addition to classifying previously described kinesins from protists, fungi, and animals, we analyzed a variety of kinesin sequences from the plant kingdom including 12 from Zea mays and 29 from Arabidopsis thaliana. Also included in our data set were four sequences from the anciently diverged amitochondriate protist Giardia lamblia. The overall topology of the best tree we found is more likely than previously reported topologies and allows us to make the following new observations: (1) kinesins involved in chromosome movement including MCAK, chromokinesin, and CENP-E may be descended from a single ancestor; (2) kinesins that form complex oligomers are limited to a monophyletic group of families; (3) kinesins that crosslink antiparallel microtubules at the spindle midzone including BIMC, MKLP, and CENP-E are closely related; (4) Drosophila NOD and human KID group with other characterized chromokinesins; and (5) Saccharomyces SMY1 groups with kinesin-I sequences, forming a family of kinesins capable of class V myosin interactions. In addition, we found that one monophyletic clade composed exclusively of sequences with a C-terminal motor domain contains all known minus end-directed kinesins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-001-0016-yDOI Listing

Publication Analysis

Top Keywords

kinesins
6
maximum likelihood
4
likelihood methods
4
methods reveal
4
reveal conservation
4
conservation function
4
function closely
4
closely kinesin
4
kinesin families
4
families reconstructed
4

Similar Publications

KIF1A, a neuron-specific Kinesin-3 motor, is indispensable for long-distance axonal transport and nuclear migration, processes vital for neuronal function. Using MINFLUX tracking, we reveal that KIF1A predominantly adopts a two-heads-bound state, even under ATP-limiting conditions, challenging prior models proposing a one-head-bound rate-limiting step. This two-heads-bound conformation, stabilized by interactions between the positively charged K-loop and negatively charged tubulin tails, enhances microtubule affinity and minimizes detachment.

View Article and Find Full Text PDF

The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric kinesin-1 lacking light chains is activated by the dynein activating adaptor BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3).

View Article and Find Full Text PDF

Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.

View Article and Find Full Text PDF

Fragment based novel drug identification and its validation through use of molecular dynamics and simulations.Comparing primary microcephaly genes with glioblastoma expression profiles reveals potential oncogenes, with proteins that support growth and survival in neural stem/progenitor cells likely retaining critical roles in glioblastoma. Identifying such proteins in familial and congenital microcephalic disorders offers promising targets for brain tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!