Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of turmeric feeding before and after benzo(a)pyrene [B(a)P] exposure on the levels of B(a)P-derived DNA adducts were studied in tissues of Swiss mice employing (32)P-postlabelling analysis. A reduction in the levels of B(a)P-derived DNA adducts in liver, lung, and forestomach was observed in animals pre-treated with 0.2 or 1% turmeric diet and exposed to B(a)P by oral intubation when compared to animals receiving standard laboratory diet and B(a)P. The observed decrease was not due to dilution caused by nascent DNA synthesis. Comparative evaluation of levels of B(a)P-derived DNA adducts in tissues of animals shifted to 0.2 or 1% turmeric diet after 24 h of oral intubation of B(a)P with those continued on standard laboratory diet did not suggest enhanced disappearance/repair of B(a)P-derived DNA adducts due to exposure to turmeric. Further, pre-treatment of mice with 1% turmeric diet significantly reduced the B(a)P-induced increase in activity of cytochrome P450 (CYP450) isozymes CYP 1A1 and 1A2 in liver, lung, and forestomach of mice. In addition, hepatic glutathione S-transferase (GST) was found to be elevated in turmeric pre-treated mice. Thus turmeric-mediated decrease in induction of phase-I enzymes in liver, lung, and forestomach of mice and enhancement of hepatic GST appear to play an important role in reducing the B(a)P-induced DNA damage in target and non-target tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3835(01)00675-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!