Camel lens zeta-crystallin was reversibly inhibited to various degrees by aspirin (acetyl salicylic acid) and the aspirin-like analgesics: paracetamol (acetaminophen) and ibuprofen (2-(4-isobutyl phenyl)-propionic acid). Among these, aspirin was the most potent inhibitor, causing nearly complete inhibition in a dose-dependent, but time-independent manner. Analysis of inhibition kinetics revealed that aspirin was uncompetitive inhibitor (K(i) 0.64 mM) with respect to NADPH and non-competitive inhibitor (K(i) 1.6 mM) with respect to the substrate, 9,10-phenanthrenequinone (PQ). Multiple-inhibition analysis showed that aspirin and pyridoxal 5' phosphate (PAL-P), a lysine specific reagent, simultaneously bound to a critical lysine residue located towards the NADPH binding region. Consistent with this, NADPH was able to substantially protect zeta-crystallin against aspirin, whereas PQ did not provide any protection. The results suggested that an essential lysine residue was the locus of aspirin binding. The inhibition of zeta-crystallin by aspirin and aspirin-like analgesics was reversible thus eliminating acetylation as a mechanism for inhibition. Reversible binding of aspirin to this lysine may cause steric hindrance resulting in uncompetitive inhibition with respect to NADPH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1357-2725(01)00099-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!