The in vitro antibacterial properties of mixtures of Australian tea tree oil and niaouli oil after adding the beta-triketone complex isolated from manuka oil were tested. MIC and MBC values for four different bacteria were determined applying the broth dilution method. Both Melaleuca oil mixtures showed good antimicrobial effects against Staphylococcus aureus and Moraxella catarrhalis, exceeding the effectiveness of myrtol, which is well established in the treatment of acute and chronic bronchitis and sinusitis. The death kinetics of S. aureus were determined to draw subtle comparisons between the mixtures. The kill rate data indicated that both Melaleuca oil mixtures achieved a complete kill within 240 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2001-18350 | DOI Listing |
Front Microbiol
January 2025
Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia.
Introduction: is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from cultivated in Vietnam.
Methods: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods.
Biomolecules
January 2025
United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.
Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.
View Article and Find Full Text PDFFoods
January 2025
Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.
In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.
View Article and Find Full Text PDFFoods
December 2024
Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India.
The current study investigated the impact of nutmeg essential oil (NEO) and tea tree essential oil (TTEO) on the preservation of raw chicken fillets during nine days of refrigerated storage study. The primary aim was to explore the antioxidant and antimicrobial properties of these essential oils (EOs) and assess their ability to extend the shelf life of poultry meat. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify the chemical compositions of NEO and TTEO, revealing the presence of compounds like myristicin and terpenoids, known for their antimicrobial and antioxidant activities.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.
Results: In this study, we first reconstructed the entire mitochondrial genome of C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!