Embryonic submandibular salivary gland (SMG) initiation and branching morphogenesis are dependent on cell-cell communications between and within epithelium and mesenchyme. Such communications are typically mediated in other organs (teeth, lung, lacrimal glands) by growth factors in such a way as to translate autocrine, juxtacrine and paracrine signals into specific gene responses regulating cell division and histodifferentiation. Using Wnt1-Cre/R26R transgenic mice, we demonstrate that embryonic SMG mesenchyme is derived exclusively from cranial neural crest. This origin contrasts to that known for tooth mesenchyme, previously shown to be derived from both neural crest and nonneural crest cells. Thus, although both SMGs and teeth are mandibular derivatives, we can expect overlap and differences in the details of their early inductive interactions. In addition, since embryonic SMG branching morphogenesis is analogous to that seen in other branching organs, we also expect similarities of expression regarding those molecules known to be ubiquitous regulators of morphogenesis. In this study, we performed an analysis of the distribution of specific fibroblast growth factors (FGFs), FGF receptors, bone morphogenetic proteins (BMPs) and Pax transcription factors, previously shown to be important for tooth development and/or branching morphogenesis, from the time of initiation of embryonic SMG development until early branching morphogenesis. In addition, we report abnormal SMG phenotypes in FgfR2- IIIc(+/Delta), BMP7(-/-) and Pax6(-/-) mice. Our results, in comparison with functional studies in other systems, suggest that FGF-2/FGFR-1, FGF-8/FGFR-2(IIIc) and FGF-10/FGFR-2(IIIb) signaling have different paracrine and juxtacrine functions during SMG initial bud formation and branching. Finally, our observations of abnormal SMGs in BMP7(-/-) and Pax6(-/-) indicate that both BMP7 and Pax6 play important roles during embryonic SMG branching morphogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000046183 | DOI Listing |
Commun Biol
January 2025
Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Methylene blue (MB) is an antifungal agent widely used during critical stages of zebrafish development. Most guidelines recommend 0.00005% or 0.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
January 2025
Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt. Electronic address:
Cryptosporidium is a leading cause of diarrhea in children and immunocompromised patients. Various animals and birds can also be infected with this protist, and Cryptosporidium zoonosis is common. A few reports have been published worldwide on Cryptosporidium infections in chickens.
View Article and Find Full Text PDFGenes Genomics
January 2025
Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.
Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.
J Parasitol
January 2025
Zoology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901-6501.
The present work includes the description of Gyrinicola pilyolcatzin n. sp. (Nematoda: Oxyurida) collected from the large intestine of tadpoles of the Montezuma frog, Rana montezumae.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!