Regulation of lipid metabolism and gene expression by fenofibrate in hamsters.

Biochim Biophys Acta

Department of Atherosclerosis and Endocrinology, Merck and Co., Inc., R80W250, P.O. Box 2000, Rahway, NJ 07065, USA.

Published: October 2001

Fenofibrate is a potent hypolipidemic agent that lowers plasma lipid levels and may thus decrease the incidence of atherosclerosis. Here we investigated the molecular mechanism of fenofibrate's hypolipidemic action by characterizing its in vivo effects on the expression of mRNAs and the activities of pivotal enzymes in cholesterol and triglyceride metabolism in the hamster. Treatment of hamsters with fenofibrate led to a dose-dependent reduction in serum cholesterol concentrations. Studies on the incorporation of [(14)C]acetate and [(14)C]mevalonate into cholesterol suggested that this effect occurs primarily through inhibition of cholesterol biosynthesis at steps prior to mevalonate. Fenofibrate decreased levels of hepatic enzyme activities and mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase. A potential mechanism for transcriptional regulation of these enzymes is via SREBP-2 that we found to be suppressed 2-fold by fenofibrate. Fenofibrate also lowered circulatory triglyceride levels. In keeping with the effect, we observed strong suppression of fatty acid synthase, acetyl-CoA carboxylase and apolipoprotein C-III mRNA and stimulation of lipoprotein lipase and acyl-CoA oxidase mRNA in the liver of fenofibrate-treated hamsters. These observations suggest that the effect of fenofibrate on triglyceride metabolism is likely to be a result of both decreased fatty acid synthesis and increased lipoprotein lipase and acyl-CoA oxidase gene expression in the liver. Surprisingly, alterations in lipoprotein lipase, acyl-CoA oxidase, acetyl-CoA carboxylase, and apolipoprotein C-III could not be observed in hamster hepatocytes incubated with fenofibric acid in vitro. These observations raise the possibility that changes in these genes may be secondary to the metabolic alterations occurring in animals but not in cultured cells and thus that the effect of fenofibrate on these genes may be indirect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1388-1981(01)00156-1DOI Listing

Publication Analysis

Top Keywords

lipoprotein lipase
12
lipase acyl-coa
12
acyl-coa oxidase
12
gene expression
8
fenofibrate
8
hamsters fenofibrate
8
triglyceride metabolism
8
hmg coa
8
fatty acid
8
acetyl-coa carboxylase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!