Several novel phospha sugar nucleosides, analogs of normal sugar nucleosides, were synthesized from a phospholene 1-oxide derivative. Bromination of a phospholene precursor in aqueous organic medium gave regio diastereomers, the threo and erythro bromohydrins 3 (1-bromo-1,3,4-trideoxy-1,4-C-[(R,S)-phenylphosphinylidene]-glycero-tetrofuranose). Further substitution of the threo isomer 3a with sodium azide led to its corresponding azidophospholane 4 (1-azido-1,3,4-trideoxy-2-methyl-1,4-C-[(R)-phenylphosphinylidene]-beta-D-glycero-tetrofuranose). 1,3-Dipolar cycloaddition of 4 with various electron-deficient and electron-rich alkynes afforded triazole derivatives that are nucleoside analogues. The strong electron-withdrawing phosphoryl group in the hemiacetal ring exerted no effect over reaction regioselectivity of the 1,3-dipolar cycloaddition, but steric effects of the alkynes played a vital role on the selectivity, since the regioisomer ratios and the rates and yields of cycloadducts changed as the bulkiness of the substituents on the acetylene changes. Structures of all compounds were unequivocally confirmed by 1H, 13C, and 31P NMR and mass spectral studies. Single crystal X-ray crystallographic analysis of some derivatives allowed determination of configuration of the phospha sugar nucleosides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6215(01)00264-6 | DOI Listing |
J Phys Chem B
January 2025
Intermolecular Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
Food Chem
December 2024
National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Systematic research is still lacking on the content of hydrophilic compounds in Fu Brick Tea (FBT) from major Chinese production regions and their variation patterns during the processing of FBT. This study utilized optimized non-targeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) metabolomics to analyze 73 FBT samples from six regions of China and 30 samples from different stages of FBT processing. 573 and 74 hydrophilic compounds were respectively relatively and absolutely quantified for the first time.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.
Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!