Electrolyte disorders.

Vet Clin North Am Small Anim Pract

Emergency and Critical Care Services, Angell Memorial Animal Hospital, Boston, Massachusetts, USA.

Published: November 2001

Abnormal electrolyte concentrations occur commonly in hospitalized patients and may produce a variety of clinical symptoms, cause lack of response to therapeutics for primary clinical conditions, and affect clinical outcome. Recognition of electrolyte disturbances requires a high index of suspicion by the clinician for such a disturbance and prompt therapy to ensure a positive and timely outcome for the patient. This article discusses electrolyte abnormalities that occur in critically ill patients, with a review of diseases commonly associated with each electrolyte disturbance, and their recommended management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0195-5616(01)50104-7DOI Listing

Publication Analysis

Top Keywords

electrolyte
5
electrolyte disorders
4
disorders abnormal
4
abnormal electrolyte
4
electrolyte concentrations
4
concentrations occur
4
occur commonly
4
commonly hospitalized
4
hospitalized patients
4
patients produce
4

Similar Publications

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries.

Nat Commun

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.

The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.

View Article and Find Full Text PDF

Algal-bacterial bioremediation of cyanide-containing wastewater in a continuous stirred photobioreactor.

World J Microbiol Biotechnol

January 2025

The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!