N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from adenosine 3'-phosphate,5'-phosphosulfate to the C-6 position of the non-reducing GlcNAc. Three human GlcNAc6STs, namely GlcNAc6ST-1, GlcNAc6ST-2 (HEC-GlcNAc6ST), and GlcNAc6ST-3 (I-GlcNAc6ST), were produced as fusion proteins to protein A, and their substrate specificities as well as their enzymological properties were determined. Both GlcNAc6ST-1 and GlcNAc6ST-2 efficiently utilized the following oligosaccharide structures as acceptors: GlcNAcbeta1-6[Galbeta1-3]GalNAc-pNP (core 2), GlcNAcbeta1-6ManOMe, and GlcNAcbeta1-2Man. The ratios of activities to these substrates were not significantly different between the two enzymes. However, GlcNAc6ST-2 but not GlcNAc6ST-1 acted on core 3 of GlcNAcbeta1-3GalNAc-pNP. GlcNAc6ST-3 used only the core 2 structure among the above mentioned oligosaccharide structures. The ability of GlcNAc6ST-1 to sulfate core 2 structure as efficiently as GlcNAc6ST-2 is consistent with the view that GlcNAc6ST-1 is also involved in the synthesis of l-selectin ligand. Indeed, cells doubly transfected with GlcNAc6ST-1 and fucosyltransferase VII cDNAs supported the rolling of L-selectin-expressing cells. The activity of GlcNAc6ST-2 on core 3 and its expression in mucinous adenocarcinoma suggested that this enzyme corresponds to the sulfotransferase, which is specifically expressed in mucinous adenocarcinoma (Seko, A., Sumiya, J., Yonezawa, S., Nagata, K., and Yamashita, K. (2000) Glycobiology 10, 919-929).

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M106587200DOI Listing

Publication Analysis

Top Keywords

l-selectin ligand
8
glcnac6st-1 glcnac6st-2
8
oligosaccharide structures
8
core structure
8
mucinous adenocarcinoma
8
glcnac6st-1
6
glcnac6st-2
5
core
5
specificities n-acetylglucosamine-6-o-sulfotransferases
4
n-acetylglucosamine-6-o-sulfotransferases relation
4

Similar Publications

To minimize off-target adverse effects and improve drug efficacy, various tissue-specific drug delivery systems have been developed. However, even in diseased organs, both normal and stressed, dying cells coexist, and a targeted delivery system specifically for dying cells has yet to be explored to mitigate off-target effects within the same organ. This study aimed to establish such a system.

View Article and Find Full Text PDF
Article Synopsis
  • * A study improved BMSCs' effectiveness by genetically modifying them to express HCELL, a strong ligand that enhances their ability to migrate to ischemic areas in the brain.
  • * The results indicated that these modified BMSCs significantly reduced neurological damage, minimized brain cell death, and decreased inflammation, suggesting that HCELL expression could be a valuable treatment approach for ischemic stroke.
View Article and Find Full Text PDF

Background: Early diagnosis and treatment of Systemic lupus erythematosus (SLE) and Systemic sclerosis (SSc) present significant challenges for clinicians. Although various studies have observed changes in serum levels of selectins between healthy donors and patients with autoimmune diseases, including SLE and SSc, their potential as biomarkers has not been thoroughly explored. We aimed to investigate serum profiles of PSGL-1 (sPSGL-1), ADAM8 (sADAM8) and P-, E- and L-selectins (sP-, sE- and sL-selectins) in defined SLE and SSc patient cohorts to identify disease-associated molecular patterns.

View Article and Find Full Text PDF

Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewis (sLe) and sialyl Lewis (sLe). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology.

View Article and Find Full Text PDF

The role of galectins in mediating the adhesion of circulating cells to vascular endothelium.

Front Immunol

June 2024

Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.

Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!