In our laboratory, the gene transfer efficiency of some lipofection reagents (lipofectine, lipofectamine, DOTAP and Dosper) and histones H3 and H4 was compared to that of DEAE-Dextran (64). The histones H3 and H4 were found to have the highest transfection efficiency of all the agents tested. In the present study we have analyzed other parameters important for gene delivery by the histones H3 and H4. We transferred the HIV-1 tat gene to Jurkat cells and measured the transactivation of HIV-1-LTR by the transactivator protein, expressed in Jurkat cells. The expression of CAT as a reporter gene hybridized to LTR was a direct measure of transactivation potential. In order to investigate whether the transfection was only due to the positive ionic character of the histones H3 and H4 we tested other histones (H1 and H2A) and polylysine in our system. Under our experimental conditions, neither polylysine, nor the histones H1 and H2A were able to promote gene transfer in Jurkat cells. The inability of these reagents to promote gene transfer was not dependent on DNA condensation; in EMSA (Electrophoretic Mobility Shift Assay) all these reagents exhibited a strong retardation of DNA. In the presence of anti-histone-IgG the transfection potential of histones H3 and H4 was diminished in a concentration - dependent manner. To investigate whether the histone antibodies inhibited the condensation of DNA by histones we carried out gel retardation assays (EMSA) in the absence and in the presence of histone antibodies. Anti-histone-IgG had no effect on the retardation of histone-DNA complexes; on the contrary, retardation was increased. This observation has led us to postulate two models for the possible mechanism by which the histones H3 and H4 catalyze gene transfer in eucaryotic cells.
Download full-text PDF |
Source |
---|
Appl Microbiol Biotechnol
January 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .
View Article and Find Full Text PDFMicrobiology (Reading)
January 2025
Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Department of Biology, Colorado State University, Fort Collins, CO, USA.
Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer (HGT), including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom HGT are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated.
View Article and Find Full Text PDFJ Insect Sci
January 2025
ZooLab, Department of Biodiversity and Ecology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia.
Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!