abg-Crystallins are the major protein components in the vertebrate eye lens--a as a molecular chaperone and b and g as structural proteins. Surprisingly, the latter two share some structural characteristics with a number of microbial stress proteins. The common denominator is not only the Greek key topology of their polypeptide chains but also their high intrinsic stability, which, in certain microbial crystallin homologs, is further enhanced by high-affinity Ca2+-binding. Recent studies of natural and mutant vertebrate bg-crystallins as well as spherulin 3a from Physarum polycephalum and Protein S from Myxococcus xanthus allowed the correlation of structure and stability of crystallins to be elucidated in some detail. From the thermodynamic point of view, stability increments come from (1) local interactions involved in the close packing of the cooperative units, (2) the all-b secondary structure of the Greek-key motif, (3) intramolecular interactions between domains, (4) intermolecular domain interactions, including 3D domain swapping and (v) excluded volume effects due to "molecular crowding" at the high cellular protein concentrations. Apart from these contributions to the Gibbs free energy of stability, significant kinetic stabilization originates from the high activation energy barrier determining the rate of unfolding from the native to the unfolded state. From the functional point of view, the high stability is responsible for the long-term transparency of the eye lens, on the one hand, and the stress resistance of the microorganisms in their dormant state on the other. Local structural perturbations due to chemical modification, wrong protein interactions, or other irreversible processes may lead to protein aggregation. A leading cataract hypothesis is that only after a-crystallin, a member of the small heat-shock protein family, is titrated out does pathological opacity occur. Understanding the structural basis of protein stability in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/20014091074237 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Electrochemical water splitting is a promising approach to convert renewable energy into hydrogen energy and is beneficial for alleviating environmental pollution and energy crises, and is considered a clean method to achieve dual-carbon goals. Electrocatalysts can effectively reduce the reaction energy barrier and improve reaction efficiency. However, designing electrocatalysts with high activity and stability still faces significant challenges, which are closely related to the structure and electronic configuration of catalysts.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids.
View Article and Find Full Text PDFACS Sens
January 2025
College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!