The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93377 | PMC |
http://dx.doi.org/10.1128/AEM.67.12.5824-5829.2001 | DOI Listing |
Liver Int
February 2025
Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China.
Background: Metabolic associated fatty liver disease (MAFLD), previously defined as non-alcoholic fatty liver disease (NAFLD), has been shown to be closely related to many environmental pollutants. Lately, we found methyl tert-butyl ether (MTBE), a new environmental pollutant, could increase NAFLD risk in American adults, which still needs more population epidemiological studies to verify, and its pathogenic mechanism is not yet clear.
Methods: We conducted a cross-sectional study among petrol station workers, diagnosed their MAFLD according to internationally recognised diagnostic criteria, assessed the potential association of MTBE exposure with MAFLD risk, and explored the miR-18a-5p/PXR/SREBP2 pathway as possible pathogenic mechanisms in male Wistar rats and HepaRG cells treated with MTBE.
Int J Mol Sci
December 2024
School of Public Health, Capital Medical University, Beijing 100069, China.
Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Clinical Diagnostics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands. Electronic address:
Introduction: High-dose systemic prednisolone is the cornerstone treatment of many autoimmune- and inflammatory diseases. Since prednisolone shows non-linear protein binding at higher serum concentrations, quantification of the unbound prednisolone concentration is important to understand prednisolone pharmacokinetics. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to quantify protein-unbound prednisolone in serum.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: lipase B (CALB), lipase (RML), and lipase (TLL).
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J/4.03, 20-708 Lublin, Poland.
Improved methods for the synthesis of nicotine are of great importance due to the wide range of applications of synthetic nicotine, which is free from contamination with nitrosamines. Herein, we present a four-step chemical synthesis of ()-nicotine, involving the reduction in myosmine, enantiomeric separation of nornicotine, and subsequent methylation of the appropriate enantiomer of nornicotine obtained. The reduction in myosmine was investigated using both electrochemical and chemical approaches, achieving up to 90% yields of pure nornicotine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!