(1-->3)-beta-D-Glucans have been recognized as a potential causative agent responsible for bioaerosol-induced respiratory symptoms observed in both indoor and occupational environments. A specific enzyme immunoassay was developed to quantify (1-->6) branched, (1-->3)-beta-D-glucans in environmental samples. The assay was based on the use of a high-affinity receptor (galactosyl ceramide) specific for (1-->3)-beta-D-glucans as a capture reagent and a monoclonal antibody specific for fungal cell wall beta-D-glucans as a detector reagent. The assay was highly specific for (1-->6) branched, (1-->3)-beta-D-glucans (such as that from Saccharomyces cerevisiae) and did not show any response at 200 ng/ml to curdlan, laminarin, pustulan, dextran, mannan, carboxymethyl cellulose, and endotoxins. The detection level was 0.8 ng/ml for baker's yeast glucan and Betafectin. A coefficient of variation of 7.8% was obtained for (1-->3)-beta-D-glucans in house dust samples. Metal working fluids spiked with (1-->3)-beta-D-glucans inhibited the glucan assay. Because the assay is specific for (1-->6) branched, (1-->3)-beta-D-glucans and is sensitive and reproducible, it will be useful for the investigation of health effects from exposure to this class of biologically active molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93324 | PMC |
http://dx.doi.org/10.1128/AEM.67.12.5420-5424.2001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!