During an intensive screening programme, several strains of cellulolytic bacteria were isolated. One nitrogenase-positive strain able to degrade filter paper, Avicel cellulose, carboxymethyl cellulose and cellobiose was selected for further study. On the basis of biochemical characteristics and Mol % of G+C content, the selected strain was identified as Bacillus polymyxa. The highest production of the enzymes degrading filter paper (FP-ase) and carboxymethyl cellulose (CMCase) by B. polymyxa was observed in Park's medium suplemented with Avicel cellulose. The investigated strain of bacteria produced cellulosome-like structures as was shown by transmission electron microscopy.
Download full-text PDF |
Source |
---|
Microorganisms
January 2025
Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China.
strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
This study investigates the application of levan- produced from Paenibacillus polymyxa SG09-12 as an antiviral agent against cucumber mosaic virus (CMV). A high-purity microbial levan was produced and purified using diafiltration. The chemical composition, structure, and functional groups of the levan were characterised using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from USE31 and pddA from NBRC15115), which remain exceedingly rare.
View Article and Find Full Text PDFBackground: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China.
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!