Bacillus thuringiensis Cry toxins are efficient, environment-friendly biological insecticides. Their molecular mode of action on target insect cells remains largely unknown. The aim of this study was to investigate the relation between the conformational state of the Cry1C toxin and its ionophoric activity on live Sf9 cells of Spodoptera frugiperda, a target insect for this protein. Potassium ion movement induced by Cry1C across the cell membrane was measured with a fluorescent assay developed previously and the conformation of the toxin was studied using tryptophan spectroscopy. Following treatment with 4 M guanidinium hydrochloride, which resulted in the unfolding of its N-terminal half, the toxin retained its full capacity to permeabilize the cells while the fully unfolded toxin did not induce potassium leakage. Therefore, permeabilization of Sf9 cells by Cry1C requires the integrity of the C-terminal half of the toxin and may depend on an initial unfolding step provided by the acidic environment of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2736(01)00403-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!