Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array.

Ann Occup Hyg

Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 4801-2029, USA.

Published: November 2001

This article describes the development and evaluation of a small prototype instrument employing an array of four polymer-coated surface acoustic wave (SAW) sensors for rapid analysis of organic solvent vapors in exhaled breath and ambient air. A thermally desorbed adsorbent preconcentrator within the instrument is used to increase sensitivity and compensate for background water vapor. Calibrations were performed for breath and dry nitrogen samples in Tedlar bags spiked with 16 individual solvents and selected binary mixtures. Responses were linear over the 50- to 400-fold concentration ranges examined and mixture responses were additive. The resulting library of vapor calibration response patterns was used with extended disjoint principal components regression and a probabilistic artificial neural network to develop vapor-recognition algorithms. In a subsequent analysis of an independent data set all individual vapors and most binary mixture components were correctly identified and were quantified to within 25% of their actual concentrations. Limits of detection for a 0.25 l. sample collected over a 2.5-min period were <0.3xTLV for 14 of the 16 vapors based on the criterion that all four sensors show a detectable response. Results demonstrate the feasibility of this technology for workplace analysis of breath and ambient air.

Download full-text PDF

Source

Publication Analysis

Top Keywords

solvent vapors
8
breath ambient
8
ambient air
8
surface acoustic
8
acoustic wave
8
analysis solvent
4
vapors breath
4
air surface
4
wave sensor
4
sensor array
4

Similar Publications

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

Robust, Fluorine-Free Superhydrophobic Films on Glass via Epoxysilane Pretreatment.

Langmuir

January 2025

Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Durable and fluorine-free superhydrophobic films were fabricated by a simple two-step process involving the pretreatment of glass substrates with an epoxysilane, which acted as an adhesive. The next step involved the aerosol-assisted chemical vapor deposition of a simple mixture of polydimethylsiloxane (PDMS) and SiO nanoparticles (NPs). Various parameters were studied, such as deposition time as well as PDMS and SiO loadings.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!