This paper describes a model of tumor-induced bone destruction and hyperalgesia produced by implantation of fibrosarcoma cells into the mouse calcaneus bone. Histological examination indicates that tumor cells adhere to the bone edge as early as post-implantation day (PID) 3, but osteolysis does not begin until PID 6, correlating with the development of hyperalgesia. C3H/He mice exhibit a reproducible hyperalgesia to mechanical and cold stimuli between PID 6 and 16. These behaviors are present but significantly reduced with subcutaneous implantation that does not involve bone. Systemic administration of morphine (ED(50) 9.0 mg/kg) dose-dependently attenuated the mechanical hyperalgesia. In contrast, bone destruction and hypersensitivity were not evident in mice implanted with melanoma tumors or a paraffin mass of similar size. A novel microperfusion technique was used to identify elevated levels of the putative algogen endothelin (ET) in perfusates collected from the tumor sites of hyperalgesic mice between PID 7 and 12. Increased ET was evident in microperfusates from fibrosarcoma tumor-implanted mice but not from melanoma tumor-implanted mice, which are not hyperalgesic. Intraplantar injection of ET-1 in naive and, to a greater extent, fibrosarcoma tumor-bearing mice produced spontaneous pain behaviors, suggesting that ET-1 activates primary afferent fibers. Intraplantar but not systemic injection of the ET-A receptor antagonist BQ-123 partially blocked tumor-associated mechanical hyperalgesia, indicating that ET-1 contributes to tumor-induced nociception. This model provides a unique approach for quantifying the behavioral, biochemical, and electrophysiological consequences of tumor-nerve interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763897PMC
http://dx.doi.org/10.1523/JNEUROSCI.21-23-09355.2001DOI Listing

Publication Analysis

Top Keywords

bone destruction
8
mechanical hyperalgesia
8
tumor-implanted mice
8
mice
6
bone
5
hyperalgesia
5
functional interactions
4
interactions tumor
4
tumor peripheral
4
peripheral nerve
4

Similar Publications

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Spondyloarthritis is a prevalent and persistent condition that significantly impacts the quality of life. Its intricate pathological mechanisms have led to a scarcity of animal models capable of replicating the disease progression in humans, making it a prominent area of research interest in the field. To delve into the pathological and physiological traits of spontaneous non-human primate spondyloarthritis, this study meticulously examined the disease features of this natural disease model through an array of techniques including X-ray imaging, MRI imaging, blood biochemistry, markers of bone metabolism, transcriptomics, proteomics, and metabolomics.

View Article and Find Full Text PDF

Trends in Research of Odontogenic Keratocyst and Ameloblastoma.

J Dent Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.

View Article and Find Full Text PDF

Objectives: To describe the functional outcomes, complications, and reconstruction types in patients with periacetabular metastases and to propose an extension of the Harrington classification.

Methods: Twenty-eight patients (13 males, 15 females) with a mean age of 63.8 ± 15.

View Article and Find Full Text PDF

Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!