Adenosine regulates the IL-1 beta-induced cellular functions of human gingival fibroblasts.

Int Immunol

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: December 2001

In this study we examined the influence of adenosine on the cellular functions of human gingival fibroblasts (HGF), such as the production of inflammatory cytokines and extracellular matrices (ECM), and the expression and function of adhesion molecules. Concerning the expression of adenosine receptors, RT-PCR analysis revealed that HGF expressed adenosine receptor A1, A2a and A2b, but not A3 mRNA. Ligation of adenosine receptors by adenosine or its related analogue, 2-chloroadenosine (2-CADO), N(6)-cyclopentyladenosine (CPA) or CGS21680 synergistically increased IL-1beta-induced IL-6 and IL-8 production. In terms of ECM expression, adenosine and the adenosine receptor agonists, 2-CADO and CPA, enhanced constitutive and IL-1beta-induced expression of hyaluronate synthase mRNA, but not the mRNA levels of other ECM, such as collagen type I, III and fibronectin. Moreover, the adherence of IL-1beta-stimulated HGF to activated lymphocytes was also inhibited by adenosine, which is in part explained by the fact that adenosine down-regulated the IL-1beta-induced expression of ICAM-1 on HGF. These results provide new evidence for the possible involvement of adenosine in the regulation of inflammatory responses in periodontal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/13.12.1533DOI Listing

Publication Analysis

Top Keywords

adenosine
11
cellular functions
8
functions human
8
human gingival
8
gingival fibroblasts
8
ecm expression
8
expression adenosine
8
adenosine receptors
8
adenosine receptor
8
il-1beta-induced expression
8

Similar Publications

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!