Tendons do not normally produce detectable signals with conventional magnetic-resonance techniques and are recognised as dark signal voids. However, if tendons are examined at 55 degrees to the static magnetic field (the "magic angle"), signals become detectable and the tendons can become the brightest structure on the image. We have used this approach to establish tendon relaxation times and magnetisation transfer ratios and to show contrast enhancement. We have also shown more detail of acute and chronic tendon rupture by this method compared with images made with the tendon parallel to the static magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(01)06661-2DOI Listing

Publication Analysis

Top Keywords

static magnetic
8
magnetic field
8
magnetic resonance
4
resonance magic
4
magic angle
4
angle imaging
4
imaging achilles
4
tendon
4
achilles tendon
4
tendon tendons
4

Similar Publications

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

Insomnia disorder is a significant global health concern. This research aimed to explore the pathogenesis of insomnia disorder using static and dynamic degree centrality methods at the voxel level. A total of 29 patients diagnosed with insomnia disorder and 28 healthy controls were ultimately included to examine differences in degree centrality between the two groups.

View Article and Find Full Text PDF

Purpose: Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study investigated whether an explainable radiomics model modifies nuclear physicians' assessment of glioma aggressiveness at diagnosis.

View Article and Find Full Text PDF

Underwater low-power electromagnetic transducers with Central permanent magnet integration.

J Acoust Soc Am

January 2025

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.

High-efficiency electromagnetic transducers are crucial for enabling the self-sustained operation of underwater electromagnetic sound sources under power-constrained conditions as noted by Hao, Xie, and Ma [Proceedings of the 2019 Western China Acoustics Academic Conference, Guangzhou, China (November 5-9, 2019)]. This paper proposes a permanent magnet drive technology to enhance the electromechanical conversion efficiency of can-type electromagnetic transducers under low-power driving conditions. The can-type transducers consist of coils, an armature, and a cylindrical magnetic core with a central pillar, similar to the pot core proposed by Cui, Xu, Xu, and Shui [Electr.

View Article and Find Full Text PDF

Fuzzy self-tuning fractional order PD permanent magnet synchronous motor speed control based on torque compensation.

Sci Rep

January 2025

Changchun Automobile Economic & Technological Development Zone Employment Service Bureau, Jilin City, China.

The permanent magnet synchronous motor control system is characterized by its nonlinear and strongly coupled complexity, presenting significant challenges for control performance optimization. To address these challenges, a Fuzzy adaptive fractional order [Formula: see text] control strategy based on torque observation compensation is proposed. The parameters of the fractional order [Formula: see text] controller are optimized real time using fuzzy logic reasoning, in order to enhance the speed of parameters tuning, a graphical design method of the fractional order [Formula: see text] controller parameters based on frequency domain performance indicators is proposed to obtain the initial values of the fuzzy adaptive fractional order [Formula: see text] controller parameters graphically and intuitively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!