The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222232 | PMC |
http://dx.doi.org/10.1042/0264-6021:3600321 | DOI Listing |
Biol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).
View Article and Find Full Text PDFLiver Int
February 2025
Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Hematology, Children's Hospital of Soochow University, Suzhou, China.
Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
Cell cycle-dependent gene expression analysis is particularly important as numerous genes show tightly regulated expression patterns at different phases of the cell cycle. For cancer cells, analysis of cell cycle-related events is of paramount significance since tumorigenesis is characteristically coupled to cell cycle perturbations. RT-qPCR is a highly sensitive technique to investigate cell cycle-dependent transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!