Protein translocon at the Arabidopsis outer chloroplast membrane.

Biochem Cell Biol

Institute of Plant Sciences, Plant Physiology and Biochemistry Group, ETH Zürich, Switzerland.

Published: May 2002

Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o01-145DOI Listing

Publication Analysis

Top Keywords

toc complex
12
encode homologs
8
protein translocon
4
translocon arabidopsis
4
arabidopsis outer
4
outer chloroplast
4
chloroplast membrane
4
membrane chloroplasts
4
chloroplasts organelles
4
organelles essential
4

Similar Publications

Objectives: Paramedic services face increasing challenges due to delays in patient transfer of care (TOC) at emergency departments (EDs). Prolonged TOC times directly impact paramedic services' ability to provide emergency response, though the patient and clinical factors contributing to these delays remain unclear. We examined TOC times for all transports to the ED and analyzed factors associated with prolonged TOC.

View Article and Find Full Text PDF
Article Synopsis
  • The pore structure of shale significantly influences shale gas occurrence and flow, and fractal dimensions can quantitatively describe this complexity.
  • The study focused on the Leping Formation shale in the southern Sichuan Basin, utilizing techniques like low-pressure CO adsorption and low-temperature N adsorption to analyze pore characteristics and geochemistry.
  • Results showed high total organic carbon (TOC) content (average 2.25%), with varying quartz and clay mineral contents, revealing a complex pore system dominated by mesopores and a multimodal pore size distribution, indicating significant structural complexity.
View Article and Find Full Text PDF

With the rapid development of electroless nickel (Ni) plating industry, a large amount of Ni complex wastewater is inevitably produced, which is a serious threat to the ecological environment. Herein, a novel Mn-N codoped active carbon (Mn-N@AC) catalyst with high catalytic ozonation ability was synthesized by the impregnation precipitation method and was characterized by BET, XRD, Raman, SEM, FTIR, and TPR. Meanwhile, Mn-N@AC showed excellent catalytic ozonation ability, stability, and applicability.

View Article and Find Full Text PDF

Enhanced leachate concentrate degradation across variable pH ranges using Cu@ATP-CTS Fenton-like catalysts for H₂O₂ activation.

Environ Res

December 2024

College of Environmental Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.

Landfill leachate nanofiltration concentrates (LLNC) contain complex organic pollutants that are difficult to treat. This study developed a copper-doped attapulgite-chitosan composite catalyst (Cu@ATP-CTS) for efficient LLNC degradation in a Fenton-like system. The incorporation of attapulgite extended the effective pH range of Fenton reactions from 2 to 8, overcoming traditional limitations.

View Article and Find Full Text PDF

Enhanced TOC removal from paper mill wastewater using air dielectric barrier discharge plasma with persulfate sources: Mechanistic insights and continuous flow operation performance evaluation.

J Hazard Mater

December 2024

Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea. Electronic address:

This study investigates the removal of total organic carbon (TOC) from paper mill wastewater using air dielectric barrier discharge (DBD) plasma, combined with various persulfate sources, namely potassium peroxymonosulfate (PMS), potassium peroxydisulfate (PDS), and sodium persulfate (SPS). Mechanistic insights into the activation of plasma-PDS and -PMS were obtained through quenching experiments and electron spin resonance (ESR) techniques. The addition of persulfate to air DBD plasma increased TOC removal kinetics by approximately 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!