The introduction of colloidally stable liposomes with low drug leakage rates resulted in a renaissance in liposome applications in cancer therapy. Furthermore, a platform of sterically stabilized liposomes also allows the construction of new generations of drug delivery vehicles. These include targeted liposomes and targeted nucleic acid delivery vehicles, based either on cationic sterically stabilized liposomes or pre-condensed DNA encapsulated in neutral or negatively charged liposomes.
Download full-text PDF |
Source |
---|
ChemSusChem
December 2024
Tokyo Institute of Technology, Department of Chemical Science and Engineering, 4259 G1-9, Nagatsuta, Midori-ku,, 226-8501, Yokohama, JAPAN.
To realize the robust anion exchange membrane (AEM)-based water splitting modules and fuel cells, the design and synthesis of tetraarylphosphonium (TAP) cations are described as a new class of cationic building blocks that exhibit remarkable alkaline stability under harsh conditions. TAP cations with highly sterically demanding aromatic substituents were efficiently synthesized from triarylphosphine derivatives and highly reactive arynes, whose alkaline degradation proved to be suppressed dramatically by the sterically demanding substituents. In the case of bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium, for example, approximately 60% of the cation survived for 27 d under the forced conditions (i.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
The practical applications of aqueous Zn metal batteries are promising, yet still impeded by the corrosion reactions and dendrite growth on the Zn metal anode. Here, a self-adsorbed monolayer (SAM) is designed to stabilize the Zn metal anode. Theory and experiment results show that the interfacial confinement effect of the SAM, for one thing, greatly suppresses the corrosion reactions through the HO-poor inner Helmholtz plane because of the steric-hindrance effect, and for another, alleviates the Zn concentration gradient on the anode surface through the Zn enrichment behavior and eventually inhibits the dendrite growth.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:
Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.
Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).
View Article and Find Full Text PDFAnal Chem
December 2024
Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!