In plants infected with Potato leafroll virus (PLRV), or other luteoviruses, infection is very largely confined to cells in the vascular system. Even in tobacco plants transformed with PLRV full-length cDNA, in which all mesophyll cells should synthesize infectious PLRV RNA transcripts, only a minority of the mesophyll cells accumulate detectable amounts of virus. We have explored this phenomenon further by transforming a better PLRV host, Nicotiana benthamiana, with the same transgene, by superinfecting transformed plants with Potato virus Y and by producing tobacco plants in which cells contained both PLRV cDNA and DNA encoding the P1/HC-Pro genes of the potyvirus Tobacco etch virus. A greater proportion of cells in superinfected plants or in doubly transgenic plants accumulated PLRV than did in singly transgenic tobacco plants. However, most cells in these plants did not accumulate virus. To investigate restriction of the multiplication of viruses containing PLRV sequences, transgenic plants were infected with a chimeric virus that consisted of Tobacco mosaic virus (TMV) containing genes for either the coat protein (CP) of PLRV or jellyfish green fluorescent protein (GFP) in place of the TMV coat protein. The virus that encoded PLRV CP spread more slowly and accumulated less extensively than did the virus that expressed GFP. The results support the suggestion that an RNA-mediated form of resistance that resembles post-transcriptional gene silencing operates in non-vascular cells and may be part of the mechanism that restricts PLRV to vascular tissue in conventionally infected plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-82-12-3099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!