Objectives: Silica is one of the most common occupational exposures worldwide. In 1997 the International Agency for Research on Cancer (IARC) classified inhaled crystalline silica as a human carcinogen (group 1), but acknowledged limitations in the epidemiologic data, including inconsistencies across studies and the lack of extensive exposure-response data. We have conducted a pooled exposure-response analysis of 10 silica-exposed cohorts to investigate lung cancer.
Methods: The pooled cohort included 65,980 workers (44,160 miners, 21,820 nominees), and 1,072 lung cancer deaths (663 miners, 409 nonminers). Follow-up has been extended for five of these cohorts beyond published data. Quantitative exposure estimates by job and calendar time were adopted, modified, or developed to permit common analyses by respirable silica (mg/m3) across cohorts.
Results: The log of cumulative exposure, with a 15-year lag, was a strong predictor of lung cancer (p = 0.0001), with consistency across studies (test for heterogeneity, p = 0.34). Results for the log of cumulative exposure were consistent between underground mines and other facilities. Categorical analyses by quintile of cumulative exposure resulted in a monotonic trend with odds ratios of 1.0. 1.0, 1.3, 1.5, 1.6. Analyses using a spline curve also showed a monotonic increase in risk with increasing exposure. The estimated excess lifetime risk (through age 75) of lung cancer for a worker exposed from age 20 to 65 at 0.1 mg/m3 respirable crystalline silica (the permissible level in many countries) was 1.1-1.7%, above background risks of 3-6%.
Conclusions: Our results support the decision by the IARC to classify inhaled silica in occupational settings as a carcinogen, and suggest that the current exposure limits in many countries may be inadequate. These data represent the first quantitative exposure-response analysis and risk assessment for silica using data from multiple studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1012214102061 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000, Antwerp, Belgium; Department of Radiation Oncology, Iridium Netwerk, Oosterveldlaan 22, 2610, Antwerp, Belgium. Electronic address:
Aim: Tumour-infiltrating lymphocytes (TILs) represent a promising cancer biomarker. Different TILs, including CD8+, CD4+, CD3+, and FOXP3+, have been associated with clinical outcomes. However, data are lacking regarding the value of TILs for patients receiving radiation therapy (RT).
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Machine Learning Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, FL.
Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
PLoS One
January 2025
Cardiovascular Outcomes Research Laboratories (CORELAB), University of California, Los Angeles, Los Angeles, CA, United States of America.
Purpose: Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have been noted to face increased cancer incidence. Yet, the impact of concomitant renal dysfunction on acute outcomes following elective surgery for cancer remains to be elucidated.
Methods: All adult hospitalizations entailing elective resection for lung, esophageal, gastric, pancreatic, hepatic, or colon cancer were identified in the 2016-2020 National Inpatient Sample.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!