A generic approach to inducing high level CD8+ T cell responses would be of value for prophylactic and therapeutic immunisation against several infectious diseases. However, it has been very difficult to achieve such immune responses using available vaccination strategies. Malaria is one of several diseases against which a new generation of better CD8+ T cell-inducing vaccines might be useful and is unusual in that it allows assessment of vaccine efficacy in small numbers of volunteers in carefully controlled challenge studies. Here we review the identification of a heterologous prime-boost regime using DNA priming and recombinant modified vaccinia Ankara (MVA) boosting that induces high level T cell responses in both mice and non-human primates. Clinical trials to determine whether this prime-boost approach is immunogenic in humans are in progress.
Download full-text PDF |
Source |
---|
Vaccines (Basel)
January 2025
Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).
View Article and Find Full Text PDFDengue virus (DENV) remains a significant public health threat in tropical and subtropical regions, with effective antiviral treatments and vaccines still not fully established despite extensive research. A critical aspect of vaccine development for DENV involves selecting proteins from both structural and non-structural regions of the virus to activate humoral and cellular immune responses effectively. In this study, we developed a novel vaccine for dengue virus serotype 2 (DENV2) using a heterologous Prime-Boost strategy that combines an adenoviral vector (Ad) with subunit vaccines.
View Article and Find Full Text PDFCell Mol Immunol
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.
View Article and Find Full Text PDFIntroduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
Filoviruses, including Ebola, Marburg, Sudan, and Taï Forest viruses, are zoonotic pathogens that can cause severe viral hemorrhagic fever and death. Developing vaccines that provide durable, broad immunity against multiple filoviruses is a high global health priority. In this Phase 1 trial, we enrolled 60 healthy U.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!