Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers.

Mol Genet Genomics

Department of Field Crops and Genetics, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot 76100, Israel.

Published: November 2001

Forty-seven new microsatellite markers were generated and applied, together with the AFLP (Amplified Fragment Length Polymorphism) technique using two different enzyme combinations, to the genetic analysis of two carp species, Cyprinus carpio L. and Ctenopharyngodon idella. The extent of polymorphism and the genetic relationships between nine carp populations were studied. The incidence of microsatellites containing CA and CT motifs was estimated to be one every 17.4 and one every 126.3 kb, respectively, and their average allele numbers were four and five, respectively. Across populations, the average proportion of individuals that were heterozygous for microsatellite markers was 44.2% and the average allele number was 4.02. The EcoRI/TaqI combination generated more analyzable AFLP bands than the EcoRI/MseI pair, making the former preferable for the analysis of carp populations. The proportion of polymorphic AFLP bands within populations ranged from 6.7% in grass carp to 59.9% in Kohaku strain (Koi) of the ornamental carp. The fixation index (FST) for microsatellites in these populations was estimated to be 0.37, and for AFLP markers the value was 0.39. Genetic distance matrices derived from microsatellites and from two AFLP analyses were positively correlated. Grass carp showed fewer AFLP bands than other populations and was genotyped by only half of the microsatellite markers. These findings agree with genetic distance estimates in suggesting that the grass carp is phylogenetically quite remote from all the other populations examined.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004380100569DOI Listing

Publication Analysis

Top Keywords

microsatellite markers
16
aflp bands
12
grass carp
12
carp
8
cyprinus carpio
8
analysis carp
8
carp populations
8
average allele
8
bands populations
8
genetic distance
8

Similar Publications

Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.

View Article and Find Full Text PDF

SSR marker-based genetic diversity and structure analyses of var. from different populations.

PeerJ

January 2025

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.

Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.

View Article and Find Full Text PDF

Enhancing trace DNA profile recovery in forensic casework using the amplicon RX post-PCR clean-up kit.

Sci Rep

January 2025

The Biology and DNA Section, General Department of Forensic Science and Criminology, Dubai Police General Head Quarters, Dubai, United Arab Emirates.

This study evaluated the effectiveness of the amplicon RX post-PCR clean-up kit in enhancing trace DNA profile recovery from forensic casework samples amplified using the GlobalFiler PCR amplification kit. The impact of post-PCR clean-up on allele recovery and signal intensity was assessed in both trace casework samples and control samples across a range of DNA concentrations. The results showed that the amplicon RX method significantly improved allele recovery compared to the 29-cycle protocol (p = 8.

View Article and Find Full Text PDF

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!