Cellular signalling and the complexity of biological timing: insights from the ultradian clock of Schizosaccharomyces pombe.

Philos Trans R Soc Lond B Biol Sci

Biological Timing Laboratory, Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JN, UK.

Published: November 2001

The molecular bases of circadian clocks are complex and cannot be sufficiently explained by the relatively simple feedback loops, based on transcription and translation, of current models. The existence of additional oscillators has been demonstrated experimentally, but their mechanism(s) have so far resisted elucidation and any universally conserved clock components have yet to be identified. The fission yeast, Schizosaccharomyces pombe, as a simple and well-characterized eukaryote, is a useful model organism in the investigation of many aspects of cell regulation. In fast-growing cells of the yeast an ultradian clock operates, which can serve as a model system to analyse clock complexity. This clock shares strict period homeostasis and efficient entrainment with circadian clocks but, because of its short period of 30 min, mechanisms other than a transcription/translation-based feedback loop must be working. An initial systematic screen involving over 200 deletion mutants has shown that major cellular signalling pathways (calcium/phosphoinositide, mitogen-activated protein kinase and cAMP/protein kinase A) are crucial for the normal functioning of this ultradian clock. A comparative examination of the role of cellular signalling pathways in the S.pombe ultradian clock and in the circadian timekeeping of different eukaryotes may indicate common principles in biological timing processes that are universally conserved amongst eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088548PMC
http://dx.doi.org/10.1098/rstb.2001.0935DOI Listing

Publication Analysis

Top Keywords

ultradian clock
16
cellular signalling
12
biological timing
8
schizosaccharomyces pombe
8
circadian clocks
8
universally conserved
8
signalling pathways
8
clock
7
signalling complexity
4
complexity biological
4

Similar Publications

Clock-Sleep Communication.

Curr Mol Med

December 2024

Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.

Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L.

View Article and Find Full Text PDF

Background: Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition that affects hair follicles in areas with apocrine sweat glands, such as the underarms, groin, and buttocks. The pathogenesis of HS is not fully understood, but considering the key role played by the biological clock in the control of immune/inflammatory processes the derangement of circadian and ultradian pathways could be hypothesized.

Methods: We analyzed genome-wide DNA methylation patterns in peripheral blood from 24 HS cases and 24 controls using the Infinium HumanMethylation450 BeadChip array (Illumina), followed by bioinformatics and statistical analyses.

View Article and Find Full Text PDF

Time-Restricted Feeding Reinforces Gut Rhythmicity by Restoring Rhythms in Intestinal Metabolism in a Jetlag Mouse Model.

Cell Mol Gastroenterol Hepatol

December 2024

Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium. Electronic address:

Background & Aims: Circadian disturbances result in adverse health effects, including gastrointestinal symptoms. We investigated which physiological pathways in jejunal mucosa were disrupted during chronic jetlag and prevented during time-restricted feeding (TRF). Enteroids from Bmal1 and Bmal1 mice were used to replicate the processes that were affected by chronic jetlag and rescued by TRF.

View Article and Find Full Text PDF

Repetitive variations, such as oscillation, are ubiquitous in biology. In this mini review, we present a general summary of the ∼24 h circadian clock and provide a fundamental overview of another biological timekeeper that maintains ∼12 h oscillations. This ∼12 h oscillator is proposed to function independently of the circadian clock to regulate ultradian biological rhythms relevant to both protein homeostasis and liver health.

View Article and Find Full Text PDF

Behavioural phenotypes of Dicer knockout in the mouse SCN.

Eur J Neurosci

December 2024

Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

The suprachiasmatic nucleus (SCN) is the master clock that directly dictates behavioural rhythms to anticipate the earth's light/dark cycles. Although post-transcriptional regulators called microRNAs have been implicated in physiological SCN function, how the absence of the entire mature miRNome impacts SCN output has not yet been explored. To study the behavioural consequences of miRNA depletion in the SCN, we first generated a mouse model in which Dicer is inactivated in the SCN by crossing Syt10 mice with Dicer mice to study behavioural consequences of miRNA depletion in the SCN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!