3.15.198.1203.15.198.1203.15.198.120 Hereditary familial vestibular degenerative diseases. | LitMetric

Identification of genes involved in hereditary vestibular disease is growing at a remarkable pace. Mutant mouse technology can be an important tool for understanding the biological mechanism of human vestibular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2001.tb03779.xDOI Listing

Publication Analysis

Top Keywords

hereditary familial
4
familial vestibular
4
vestibular degenerative
4
degenerative diseases
4
diseases identification
4
identification genes
4
genes involved
4
involved hereditary
4
hereditary vestibular
4
vestibular disease
4

Similar Publications

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).

View Article and Find Full Text PDF

Neuroendocrine Tumors: Germline Genetics and Hereditary Syndromes.

Curr Treat Options Oncol

January 2025

Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.

The vast majority of neuroendocrine 'neoplasms (NENs) are sporadic, although recent evidence has indicated that a subset of these cancers may also originate as a result of genetic germline mutations. To date, 10% of these cancers can be linked to an inherited genetic syndrome. Genetic diagnosis is crucial for patients with a suspected hereditary NEN syndrome, as it recognizes patients carrying germline mutations and allows for personalized clinical follow-up, considering the higher risk of developing other tumours.

View Article and Find Full Text PDF

Germline structural variant as the cause of Lynch Syndrome in a family from Ecuador.

NPJ Genom Med

January 2025

Gastroenterology Deparment, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.

Colorectal cancer (CRC) is one of the most common cancers worldwide. Lynch Syndrome (LS) is the most common form of hereditary CRC and it is caused by germline defects in the DNA-mismatch repair (MMR) pathway. It is of extreme importance for affected LS patients and their relatives to identify the germline causative alteration to provide intensified surveillance to those at risk and allow early diagnosis and cancer prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!