The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of hydrophilicity, strength, transparency, flexibility, and biocompatibility. Four different copolymers of n-butyl methacrylate (BMA) and hexa(ethylene glycol) methacrylate (HEGMA) were prepared and characterized. Poly(BMA) was made as a reference material. Physicochemical properties were measured (contact angles, glass-transition temperatures, thermal degradation, water uptake and swelling), and cytotoxicity in vitro was assessed with a MTT test. Moreover, the interaction between the materials and cultured human corneal epithelial cells was studied. The copolymers may be useful for temporary closure of corneal perforations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm000009t | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, 11937, Jordan.
Introduction: The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery.
Methods: In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA).
Mater Today Bio
April 2025
Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
Chirality is one of the basic characteristics of living matter, yet the effect of chiral polymers on osteogenesis is seldom studied. Thus, it is necessary to deeply recognize the behaviors of chiral polymers in osteogenic processes, which can be beneficial for the development of bone repair materials. In this work, chiral hydroxyapatite (HAP) was constructed simply using poly(levorotatory/dextral-tartaric acid) as the guest of the chiral transfer system.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
Sci Rep
January 2025
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
While silk fibroin (SF) obtained from silkworm cocoons is expected to become a next-generation natural polymer, a fabrication method for SF-based artificial nerve conduits (SFCs) has not yet been established. Here, we report a bioresorbable SFC, fabricated using a novel freeze-thaw process, which ensures biosafety by avoiding any harmful chemical additives. The SFC demonstrated favorable biocompatibility (high hydrophilicity and porosity with a water content of > 90%), structural stability (stiffness, toughness, and elasticity), and biodegradability, making it an ideal candidate for nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!