Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations.

Biomacromolecules

Center for Biomaterials Research, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.

Published: January 2002

The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of hydrophilicity, strength, transparency, flexibility, and biocompatibility. Four different copolymers of n-butyl methacrylate (BMA) and hexa(ethylene glycol) methacrylate (HEGMA) were prepared and characterized. Poly(BMA) was made as a reference material. Physicochemical properties were measured (contact angles, glass-transition temperatures, thermal degradation, water uptake and swelling), and cytotoxicity in vitro was assessed with a MTT test. Moreover, the interaction between the materials and cultured human corneal epithelial cells was studied. The copolymers may be useful for temporary closure of corneal perforations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm000009tDOI Listing

Publication Analysis

Top Keywords

polymeric biomaterials
8
corneal perforations
8
tailoring polymeric
4
biomaterials repair
4
repair medium-sized
4
medium-sized corneal
4
perforations aim
4
aim study
4
study investigate
4
investigate polymeric
4

Similar Publications

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Development of Chitosan-Polyacrylic Acid Complex Systems for Enhanced Oral Delivery of and Probiotics.

Drug Des Devel Ther

January 2025

Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, ‎Applied ‎Science Private University, Amman, 11937, Jordan.

Introduction: The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery.

Methods: In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA).

View Article and Find Full Text PDF

Chirality is one of the basic characteristics of living matter, yet the effect of chiral polymers on osteogenesis is seldom studied. Thus, it is necessary to deeply recognize the behaviors of chiral polymers in osteogenic processes, which can be beneficial for the development of bone repair materials. In this work, chiral hydroxyapatite (HAP) was constructed simply using poly(levorotatory/dextral-tartaric acid) as the guest of the chiral transfer system.

View Article and Find Full Text PDF

Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.

Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.

View Article and Find Full Text PDF

While silk fibroin (SF) obtained from silkworm cocoons is expected to become a next-generation natural polymer, a fabrication method for SF-based artificial nerve conduits (SFCs) has not yet been established. Here, we report a bioresorbable SFC, fabricated using a novel freeze-thaw process, which ensures biosafety by avoiding any harmful chemical additives. The SFC demonstrated favorable biocompatibility (high hydrophilicity and porosity with a water content of > 90%), structural stability (stiffness, toughness, and elasticity), and biodegradability, making it an ideal candidate for nerve regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!