Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, an image restoration algorithm is proposed to identify noncausal blur function. Image degradation processes include both linear and nonlinear phenomena. A neural network model combining an adaptive auto-associative network with a random Gaussian process is proposed to restore the blurred image and blur function simultaneously. The noisy and blurred images are modeled as continuous associative networks, whereas auto-associative part determines the image model coefficients and the hetero-associative part determines the blur function of the system. The self-organization like structure provides the potential solution of the blind image restoration problem. The estimation and restoration are implemented by using an iterative gradient based algorithm to minimize the error function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065701000771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!