Cartilage is comprised of a large amount of functional extracellular matrix that is made and maintained by a small number of chondrocytes, the sole resident cell type. Normal cartilage exists in a relatively steady state: that is, the anabolic processes (those that result in the synthesis of cartilage matrix components) are in equilibrium with the catabolic processes (those that result in the normal turnover of matrix molecules). If the functional extracellular matrix is disturbed by physical or molecular means, the cells respond in an attempt to repair the matrix. This stimulated activity does not result in repair due to the extent and complexity of the extracellular matrix. Eventually, the newly synthesized and activated catabolic enzymes degrade the matrix components. This review presents the cellular and molecular mechanisms that account for this activity and provides some possible solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11926-001-0064-8 | DOI Listing |
Org Biomol Chem
January 2025
Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA.
Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.
View Article and Find Full Text PDFProtein Sci
February 2025
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Patient-derived xenografts (PDXs) can be improved by implantation of a humanized niche. Nevertheless, the overall complexity of the current protocols, as well as the use of specific biomaterials and procedures, limits the wider adoption of this approach. Here, we identify the essential minimum steps required to create the humanized scaffolds and achieve successful acute myeloid leukemia (AML) engraftment.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.
Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.
Adv Healthc Mater
January 2025
Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!