Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen.

J Biol Chem

Department of Medicine and the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

Published: February 2002

Type I collagen is the most abundant protein in humans, and it helps to maintain the integrity of many tissues via its interactions with cell surfaces, other extracellular matrix molecules, and growth and differentiation factors. Nearly 50 molecules have been found to interact with type I collagen, and for about half of them, binding sites on this collagen have been elucidated. In addition, over 300 mutations in type I collagen associated with human connective tissue disorders have been described. However, the spatial relationships between the known ligand-binding sites and mutation positions have not been examined. To this end, here we have created a map of type I collagen that includes all of its ligand-binding sites and mutations. The map reveals the existence of several hot spots for ligand interactions on type I collagen and that most of the binding sites locate to its C-terminal half. Moreover, on the collagen fibril some potentially relevant relationships between binding sites were observed including the following: fibronectin- and certain integrin-binding regions are near neighbors, which may mechanistically relate to fibronectin-dependent cell-collagen attachment; proteoglycan binding may potentially impact upon collagen fibrillogenesis, cell-collagen attachment, and collagen glycation seen in diabetes and aging; and mutations associated with osteogenesis imperfecta and other disorders show apparently nonrandom distribution patterns within both the monomer and fibril, implying that mutation positions correlate with disease phenotype. These and other observations presented here may provide novel insights into evaluating type I collagen functions and the relationships between its binding partners and mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110709200DOI Listing

Publication Analysis

Top Keywords

type collagen
28
ligand-binding sites
12
binding sites
12
collagen
11
abundant protein
8
mutation positions
8
relationships binding
8
cell-collagen attachment
8
type
7
sites
6

Similar Publications

The present study aimed to investigate the role of a recombinant protein based on human collagen type I (RCPhC1) as a scaffold in maintaining the human tumor microenvironment within a patient-derived tumor xenograft (PDTX) model. RCPhC1, synthesized under animal component-free conditions, was explored for its potential to support the human-specific stroma associated with tumor growth. PDTX models were established using resected colorectal cancer liver metastasis specimens, and stromal cell populations from humans and mice were compared using three scaffolds: No scaffold (control), Matrigel and recombinant human collagen type I, across two passages.

View Article and Find Full Text PDF

Identification of potential MMP-8 inhibitors through virtual screening of natural product databases.

In Silico Pharmacol

January 2025

College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580 China.

Matrix metalloproteinase-8 (MMP-8), a type II collagenase, is a key enzyme in the degradation of collagens and is implicated in various pathological processes, making it a promising target for drug discovery. Despite advancements in the development of MMP-8 inhibitors, concerns over potential adverse effects persist. This study aims to address these concerns by focusing on the development of novel compounds with improved safety profiles while maintaining efficacy.

View Article and Find Full Text PDF

Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.

View Article and Find Full Text PDF

Background: Endothelial cells are integral components of the tumor microenvironment and play a multifaceted role in tumor immunotherapy. Targeting endothelial cells and related signaling pathways can improve the effectiveness of immunotherapy by normalizing tumor blood vessels and promoting immune cell infiltration. However, to date, there have been no comprehensive studies analyzing the role of endothelial cells in the diagnosis and treatment of prostate adenocarcinoma (PRAD).

View Article and Find Full Text PDF

Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!