It has been known for almost a century that normal human serum can lyse the extracellular blood parasite Trypanosoma brucei brucei. This process is a result of a non-immune killing factor in human sera known as trypanosome lytic factor (TLF). In this work, we demonstrate that killing of T. b. brucei by trypanosome lytic factor-1 (TLF-1) in vitro is inhibited by the lipophyllic iron chelator, LI, the lipophyllic antioxidant DPPD, and the protease inhibitors antipain and E64. Thus TLF-1 killing likely requires iron, oxidants, and serine and cysteine proteases. Furthermore, we demonstrate that TLF-1 mediated lysis causes measurable peroxidation in T. brucei lipids via a reaction that is inhibited by DPPD, weak bases, and human haptoglobin. We hypothesize that TLF-1 lysis requires intracellular factors within the trypanosome including high intracellular H2O2 and high polyenoic lipid concentrations, lysosomal acidification and proteases, and intracellular iron sources. The data presented supports the hypothesis that the combination of these factors with TLF-1 inside the lysosome results in lysosomal membrane breakdown, release of the lysosomal contents, and subsequent autodigestion of the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-6851(01)00361-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!